GIANT: Globally Improved Approximate Newton Method for Distributed Optimization

Shusen Wang

UC Berkeley

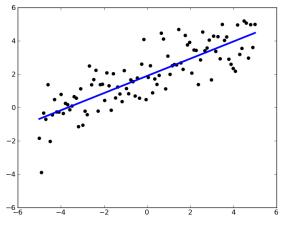
Joint work with Fred Roosta, Peng Xu, and Michael Mahoney

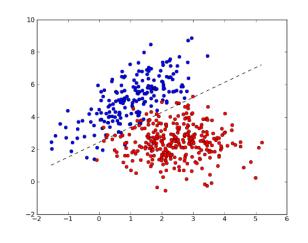
Background & Motivation

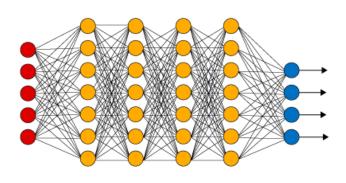
• We consider the *empirical risk minimization* problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{j=1}^n l(\mathbf{w}; \mathbf{x}_j, y_j) + r(\mathbf{w}) \right\}$$

• Examples:







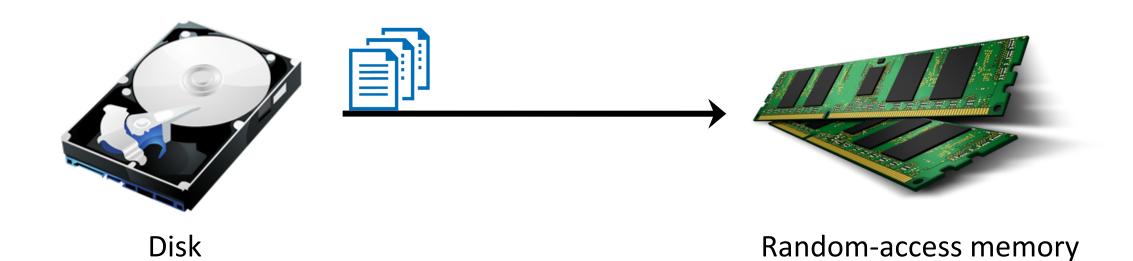
Linear Regression

Linear Classification

Neural Networks

- How to solve the optimization problem $\min_{\mathbf{w}} f(\mathbf{w})$?
 - 1. Write some code / find a package.

- How to solve the optimization problem $\min_{\mathbf{w}} f(\mathbf{w})$?
 - 1. Write some code / find a package.
 - 2. Load data to memory.



- How to solve the optimization problem $\min_{\mathbf{w}} f(\mathbf{w})$?
 - 1. Write some code / find a package.
 - 2. Load data to memory.
 - 3. Run the code.

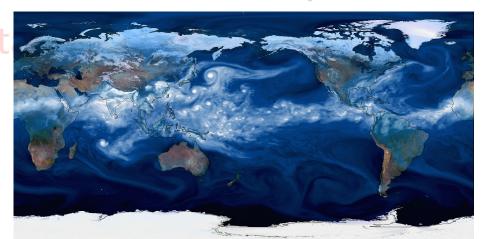
- How to solve the optimization problem $\min_{\mathbf{w}} f(\mathbf{w})$?
 - 1. Write some code / find a package.
 - 2. Load data to memory.
 - 3. Run the code.

What if the data do not fit in memory?

- How to solve the optimization problem $\min_{\mathbf{w}} f(\mathbf{w})$?
 - 1. Write some code / find a package.
 - 2. Load data to memory.
 - 3. Run the code.

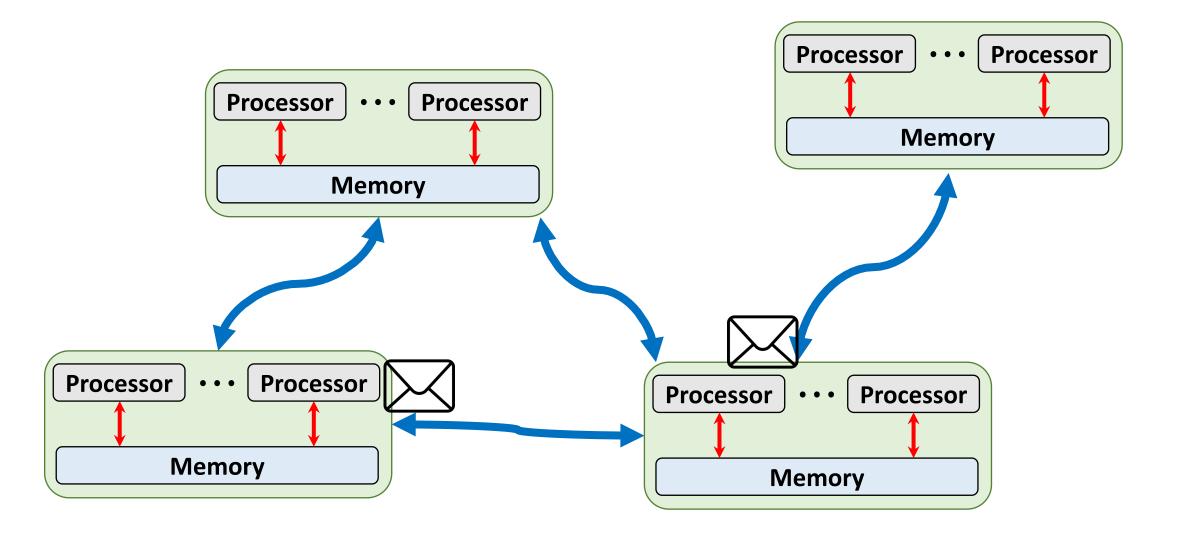
- What if the data do not fit in memory?
- What if the computation is too expensive for a single machine?

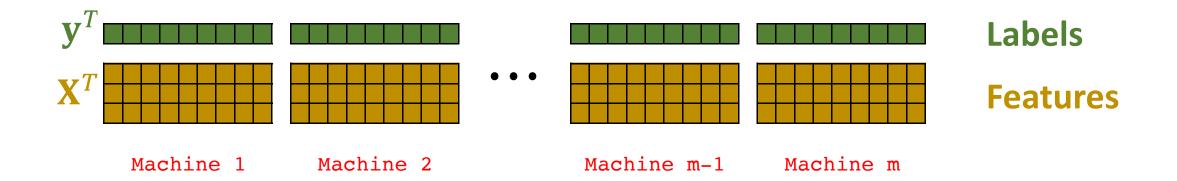
• What if the data do not fit in memory?



Computer clusters

Supercomputer





• $(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_n, y_n)$ are split among m machines.

Ideally,

- $\frac{1}{m}$ of the data fit in the memory of one machine;
- each machine does $\frac{1}{m}$ of the computation \longrightarrow mx Speedup.

Ideally,

- $\frac{1}{m}$ of the data fit in the memory of one machine;
- each machine does $\frac{1}{m}$ of the computation \longrightarrow mx Specdup.

Do not overlook the communication!

Distributed Optimization: Example

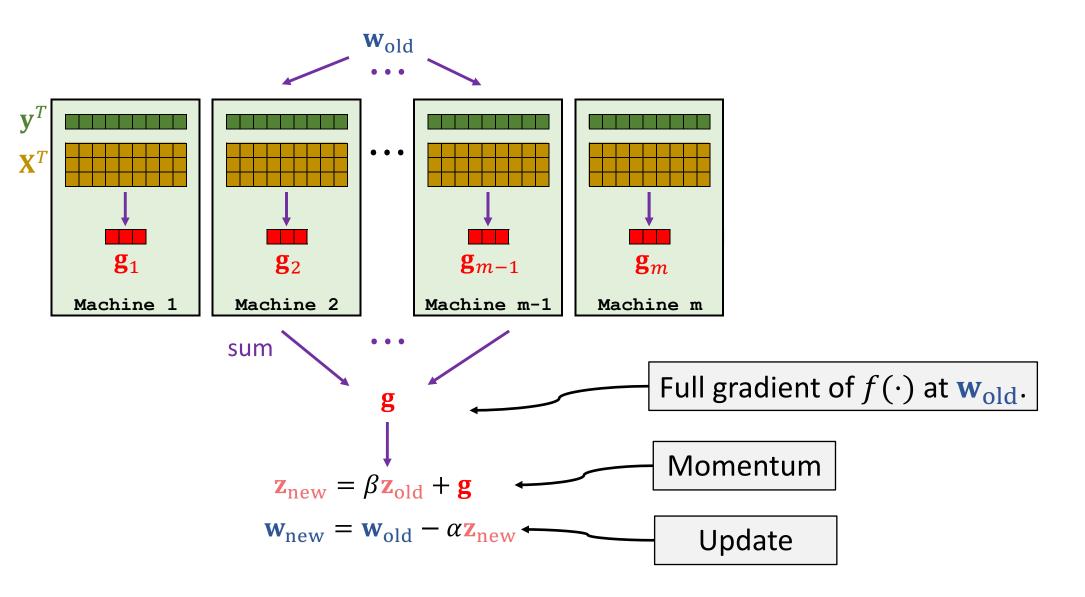
Solve the problem:

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{j=1}^n l(\mathbf{w}; \mathbf{x}_j, y_j) + r(\mathbf{w}) \right\}$$

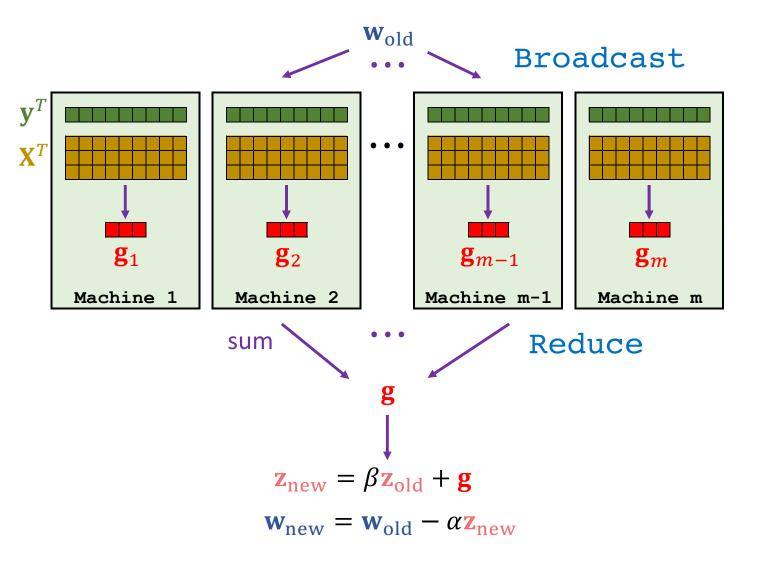
Accelerated Gradient Descent (AGD) repeats:

- 1. Compute gradient: $g = \nabla f(\mathbf{w}_{old})$;
- 2. Update momentum: $\mathbf{z}_{\text{new}} = \beta \mathbf{z}_{\text{old}} + \mathbf{g}$, $0 \le \beta < 1$;
- 3. Update model: $\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} \alpha \mathbf{z}_{\text{new}}$.

Warm-up: Distributed AGD



Warm-up: Distributed AGD

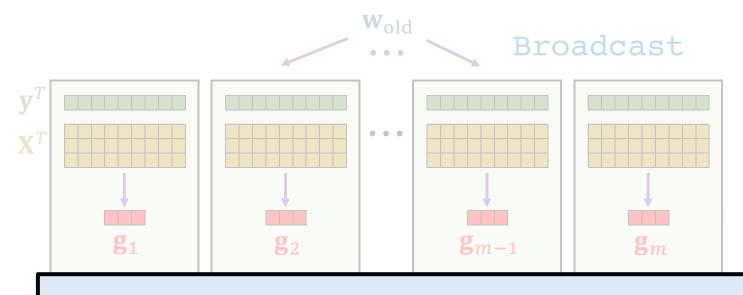


• Time complexity: $O\left(\frac{nd}{m}\right)$ FLOPs per

iteration.

- One Broadcast and one Reduce per iteration.
- Lots of iterations to converge → lots of communications.

Warm-up: Distributed AGD



• Time complexity: $O\left(\frac{nd}{m}\right)$ FLOPs per

iteration.

 One Broadcast and one Reduce

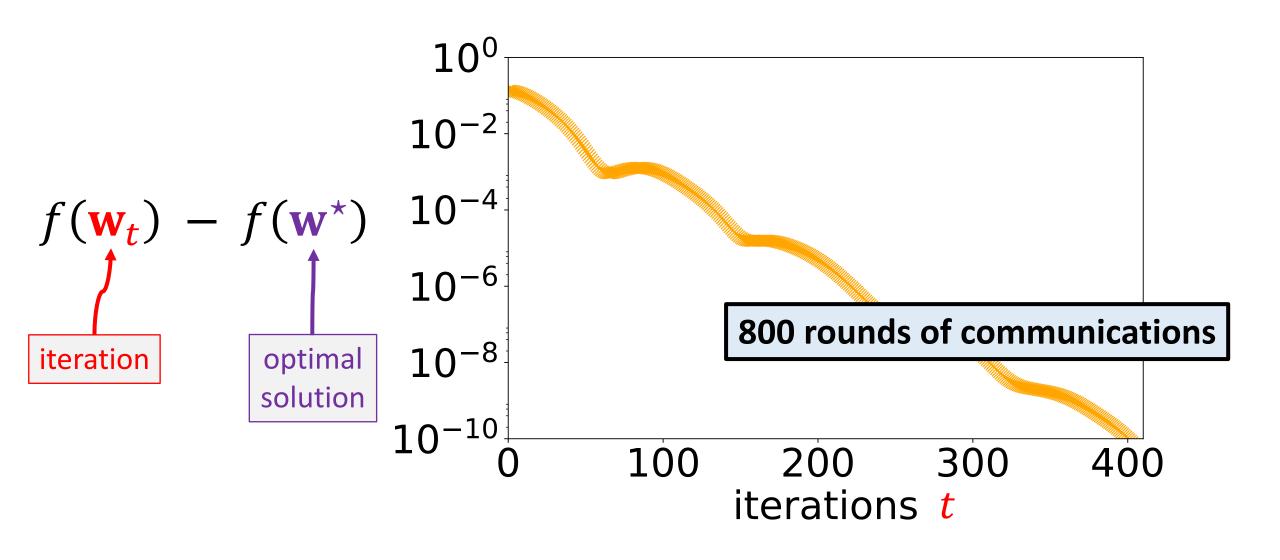
Cost = Computation + Communication

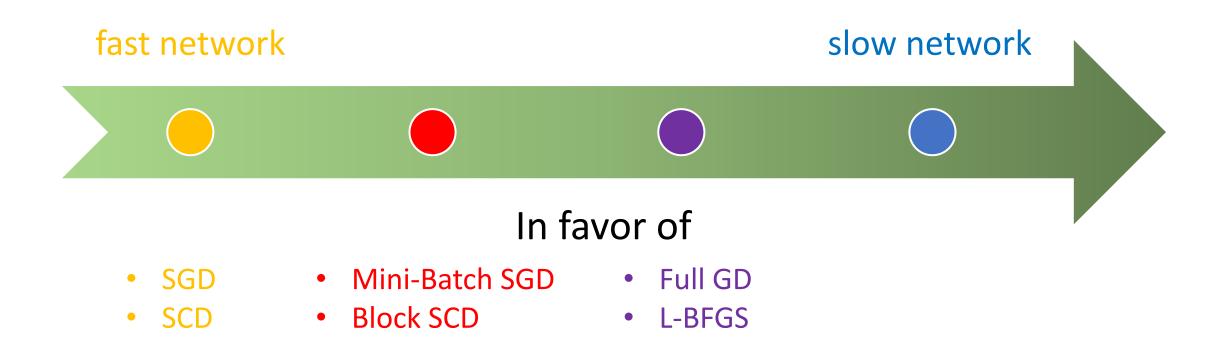
$$\mathbf{z}_{\text{new}} = \beta \mathbf{z}_{\text{old}} + \mathbf{g}$$

$$\mathbf{w}_{\text{new}} = \mathbf{w}_{\text{old}} - \alpha \mathbf{z}_{\text{new}}$$

converge lots of communications.

AGD for ℓ_2 -Regularized Logistic Regression





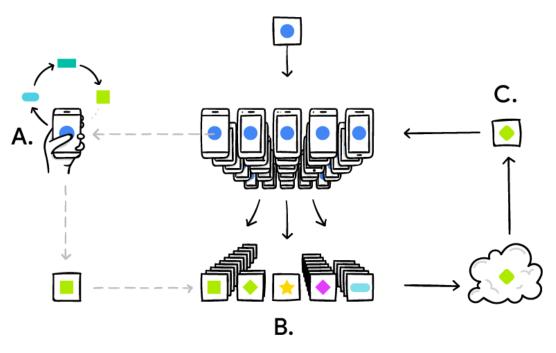
Single Machine

Cluster



Single Machine

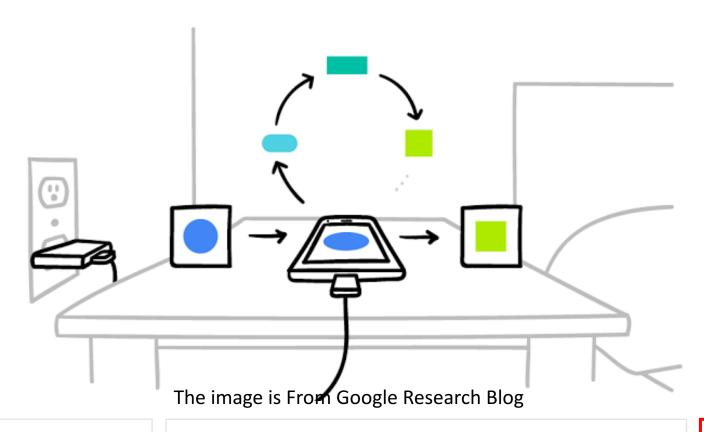
Cluster



The image is From Google Research Blog

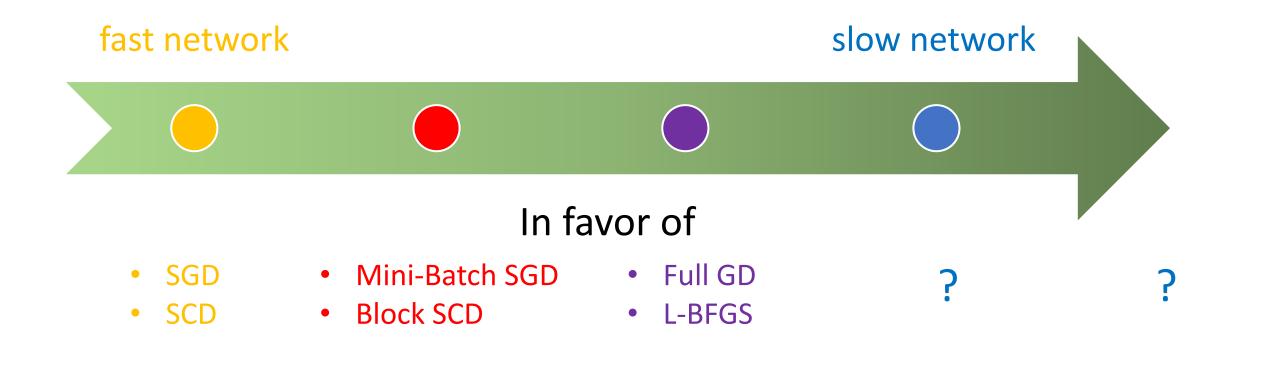
Single Machine

Cluster



Single Machine

Cluster



Single Machine

Cluster

Summary

- 1. For big-data problems, distributed optimization is very useful.
- 2. If the network is slow, then communication is the bottleneck.
 - Recall: Cost ≈ Computation + Communication

Communication-Efficient Optimization

Motivation

Basic ideas:

- 1. Let worker machines do lots of local computations.
- 2. Communicate as few as possible.

Existing communication-efficient methods:

- CoCoA
- DANE
- AIDE
 - •
 - •

They make assumptions, e.g.,

objective function is strongly convex and Lipschitz smooth

Reference:

- 1. Smith, Forte, Ma, Takac, Jordan, & Jaggi. CoCoA: A General Framework for Communication-Efficient Distributed Optimization.
- 2. Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.
- 3. Reddi, Konečný, Richtárik, Póczós, & Smola. AIDE: Fast and Communication Efficient Distributed Optimization.

Existing communication-efficient methods:

- CoCoA
- DANE
- AIDE
 - •
 - •

Recall Accelerated Gradient Descent (AGD)

- $O\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$ iterations
- 2 communications per iteration
- $O\left(\frac{nd}{m}\right)$ FLOPs per iterations

Baseline!

Existing communication-efficient methods:

- CoCoA
- DANE
- AIDE
 - •
 - •

Recall Accelerated Gradient Descent (AGD)

- $O\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$ iterations
- 2 communications per iteration
- $O\left(\frac{nd}{m}\right)$ FLOPs per iterations

Baseline!

Do their convergence bounds beat AGD?

Existing communication-efficient methods:

- CoCoA
- DANE
- AIDE
 - •
 - •

Recall Accelerated Gradient Descent (AGD)

- $O\left(\sqrt{\kappa}\log\frac{1}{\epsilon}\right)$ iterations
- 2 communications per iteration
- $O\left(\frac{nd}{m}\right)$ FLOPs per iterations

Baseline!

Do their convergence bounds beat AGD?

- In terms of communication, NO!
- In terms of computation, NO!

Existing communication-efficient methods:

- CoCoA
- DANE
- AIDE

If the objective function is quadratic, then DANE = GIANT!

GIANT: Overview

Globally Improved Approximate Newton (GIANT)

- GIANT is a distributed 2nd-order method.
- Each iteration has 4 rounds of communications.
 - Broadcast or Reduce of one vector.
- Much faster convergence than AGD in terms of communication.
 - Assume the objective function is strongly convex and Lipschitz smooth.

Globally Improved Approximate Newton (GIANT)

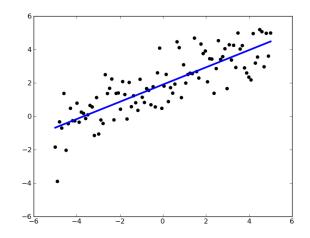
Assume the objective function is strongly convex and Lipschitz smooth.

Assume the objective function is strongly convex and Lipschitz smooth.

Examples

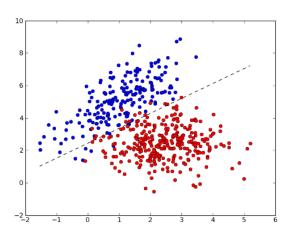
Linear regression

$$f(\mathbf{w}) = \frac{1}{2n} \sum_{j=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{j} - y_{j})^{2} + \gamma ||\mathbf{w}||_{2}^{2}$$



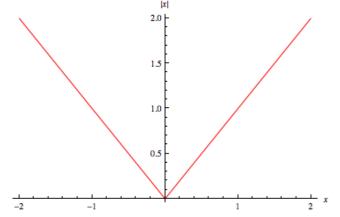
Logistic regression

$$f(\mathbf{w}) = \frac{1}{2n} \sum_{j=1}^{n} \log \left(1 + e^{-y_j \mathbf{w}^T \mathbf{x}_j} \right) + \gamma \|\mathbf{w}\|_2^2$$

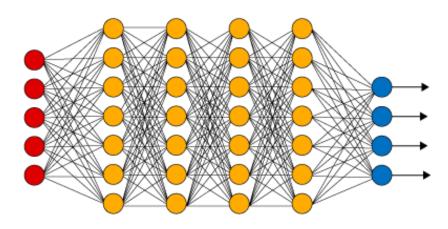


- Assume the objective function is strongly convex and Lipschitz smooth.
- Counter-examples

$$f(\mathbf{w}) = \frac{1}{2n} \sum_{j=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{j} - y_{j})^{2} + \gamma ||\mathbf{w}||_{1}$$



Neural Networks



- Assume the objective function is strongly convex and Lipschitz smooth.
- Counter-examples

The regularization is non-smooth!

j=1

Neural Networks

The objective is non-convex!

Assume the objective function is strongly convex and Lipschitz smooth.

Counter-examples

LASSO

The regularization is non-smooth!

Neural Networks

The objective is non-convex!

Extensions of GIANT (our future work):

Proximal methods

Trust-region method

Assume the objective function is strongly convex and Lipschitz smooth.

GIANT: Algorithm Description

Warm-up: Newton-CG

- Repeat until convergence
 - 1. Compute gradient g and Hessian H;
 - 2. Solve Hp = g by running tens/hundreds of CG steps;
 - 3. Update $\mathbf{w} \leftarrow \mathbf{w} \alpha \mathbf{p}$ (find α by line search).

GIANT: Algorithm Derivation

Recall: Newton's direction is $\mathbf{p} = \mathbf{H}^{-1}\mathbf{g}$.

In parallel, form the approximations:

$$\widetilde{\mathbf{H}}_1 \approx \mathbf{H}$$

$$\widetilde{\mathbf{H}}_2 \approx \mathbf{H}$$

$$\widetilde{\mathbf{H}}_{m-1} \approx \mathbf{H}$$

$$\widetilde{\mathbf{H}}_m \approx \mathbf{H}$$

In parallel, compute

$$\widetilde{\mathbf{p}}_1 = \widetilde{\mathbf{H}}_1^{-1}\mathbf{g}$$
 $\widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{H}}_2^{-1}\mathbf{g}$

$$\widetilde{\mathbf{p}}_2 = \widetilde{\mathbf{H}}_2^{-1} \mathbf{g}$$

$$\widetilde{\mathbf{p}}_{m-1} = \widetilde{\mathbf{H}}_{m-1}^{-1}\mathbf{g}$$
 $\widetilde{\mathbf{p}}_m = \widetilde{\mathbf{H}}_m^{-1}\mathbf{g}$

$$\widetilde{\mathbf{p}}_m = \widetilde{\mathbf{H}}_m^{-1} \mathbf{g}$$

$$\widetilde{\mathbf{p}} = \frac{1}{m} \sum_{i} \widetilde{\mathbf{p}}_{i} = \left(\frac{1}{m} \sum_{i} \widetilde{\mathbf{H}}_{i}^{-1}\right) \mathbf{p}_{i}$$

approximates
$$\mathbf{p} = \mathbf{H}^{-1}\mathbf{g}$$

GIANT: Algorithm Derivation

Recall: Newton's direction is $\mathbf{p} = \mathbf{H}^{-1}\mathbf{g}$.

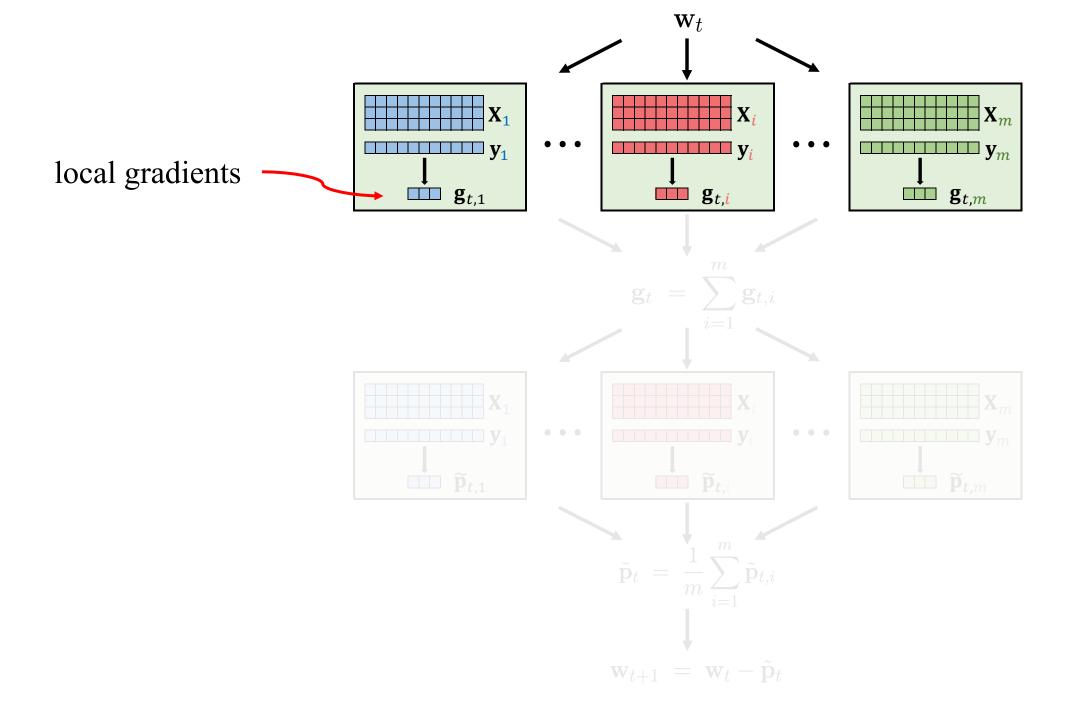
$$\widetilde{\mathbf{p}} = \frac{1}{m} \sum_{i} \widetilde{\mathbf{p}}_{i} = \left(\frac{1}{m} \sum_{i} \widetilde{\mathbf{H}}_{i}^{-1}\right) \mathbf{g}$$
 approximates $\mathbf{p} = \mathbf{H}^{-1} \mathbf{g}$

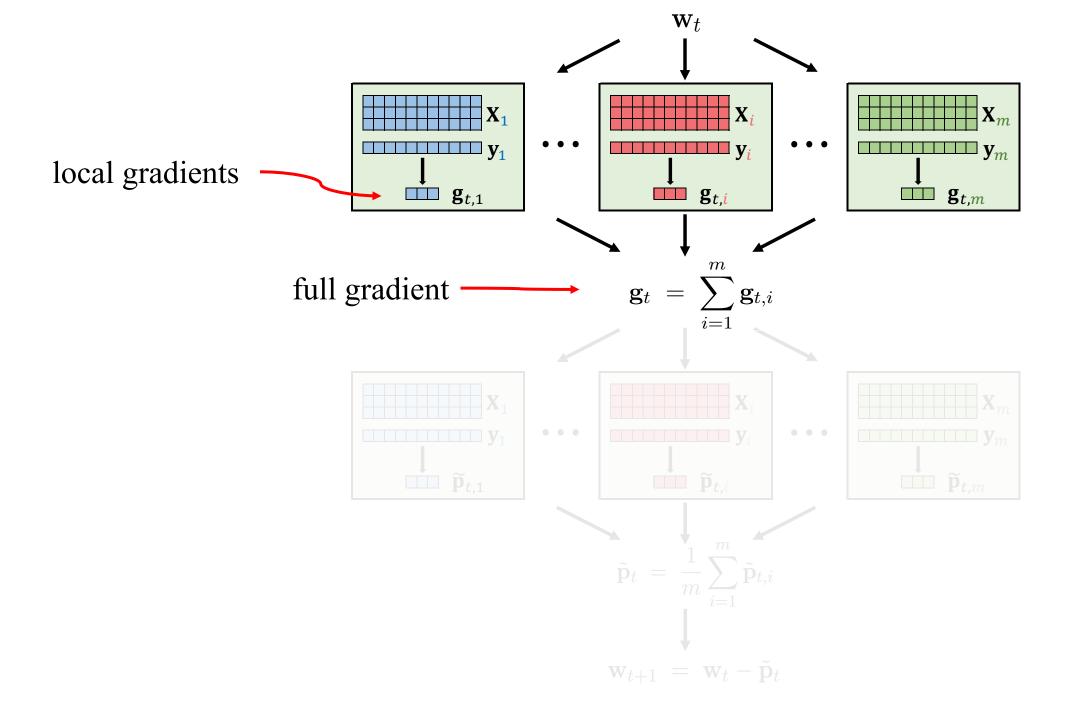
GIANT: Algorithm Derivation

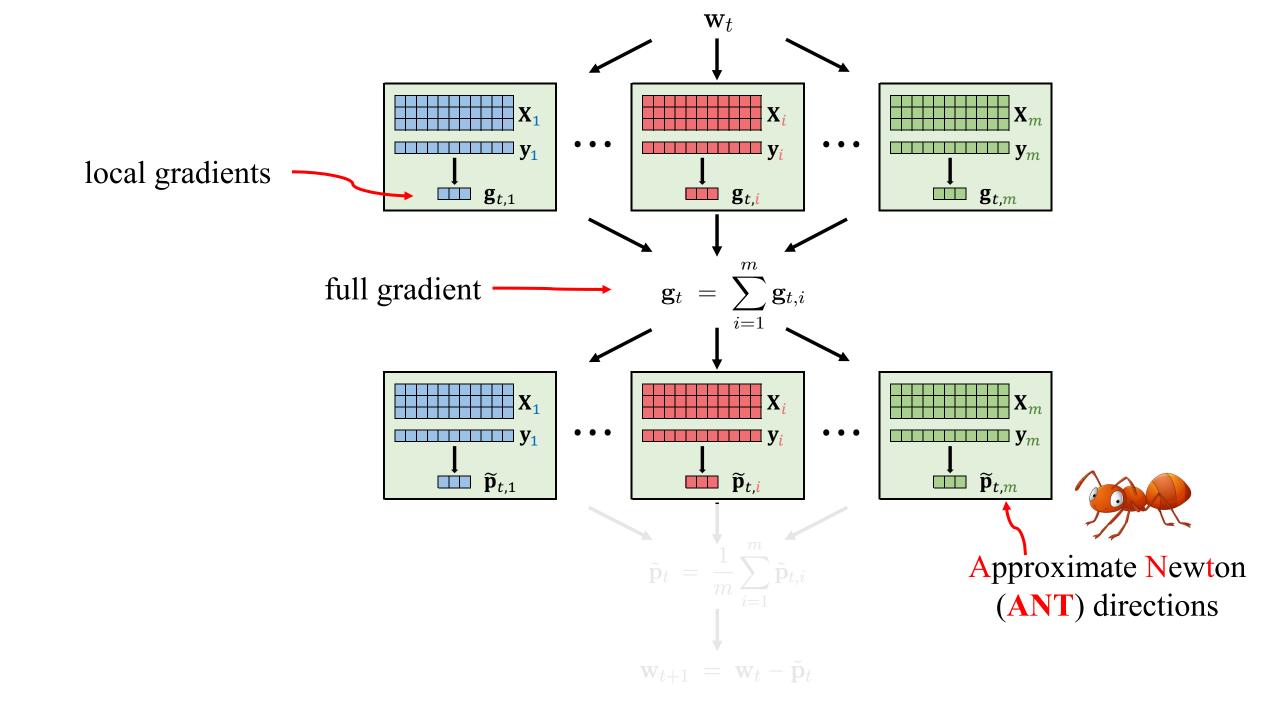
Recall: Newton's direction is $\mathbf{p} = \mathbf{H}^{-1}\mathbf{g}$.

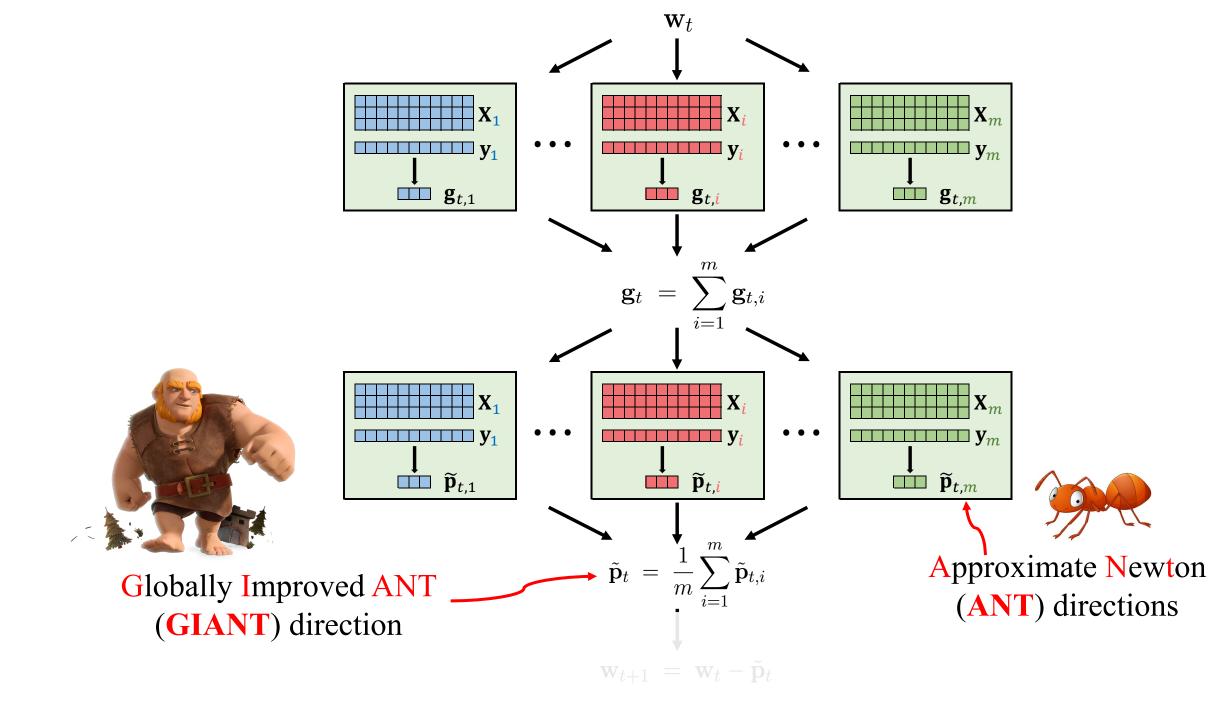
$$\widetilde{\mathbf{p}} = \frac{1}{m} \sum_{i} \widetilde{\mathbf{p}}_{i} = \left(\frac{1}{m} \sum_{i} \widetilde{\mathbf{H}}_{i}^{-1}\right) \mathbf{g}$$
 approximates $\mathbf{p} = \mathbf{H}^{-1} \mathbf{g}$

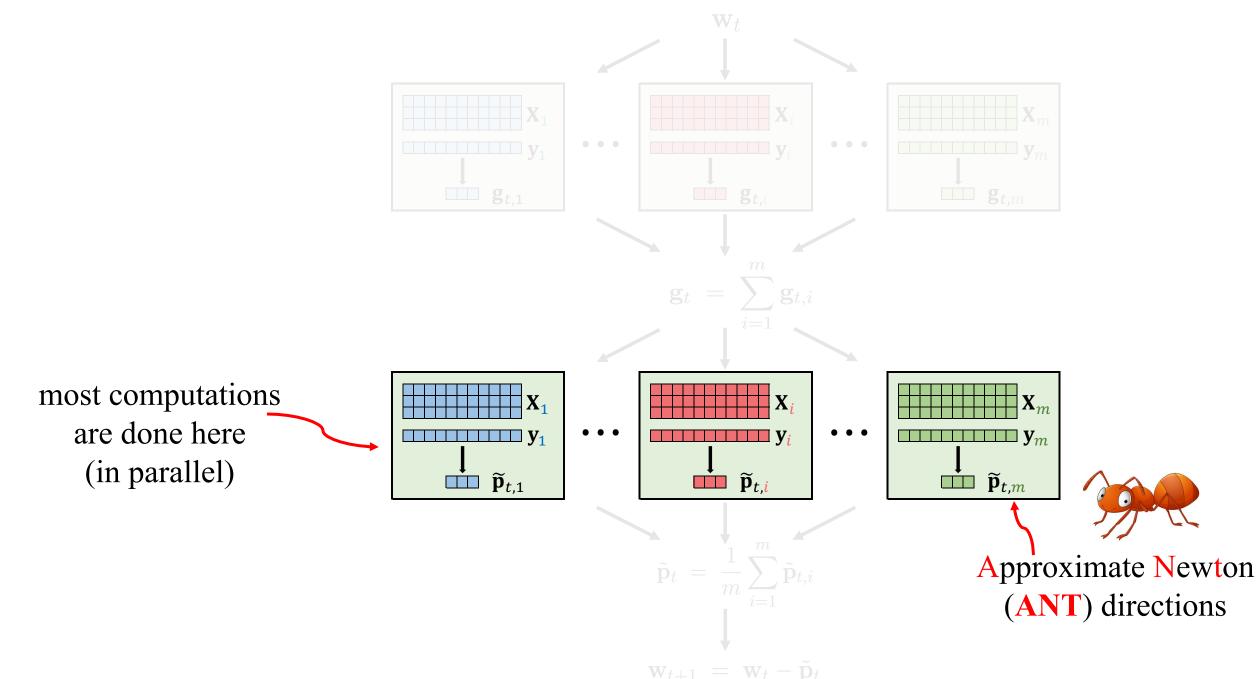
- GIANT uses the exact gradient g.
- GIANT approximates the Hessian matrix **H** by $\left(\frac{1}{m}\sum_{i}\widetilde{\mathbf{H}}_{i}^{-1}\right)^{-1}$.

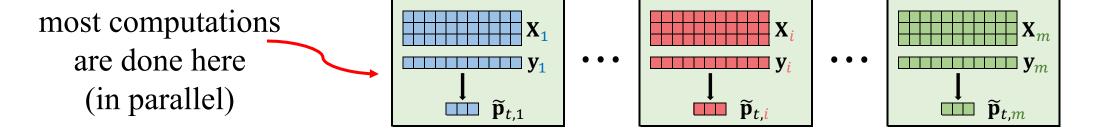




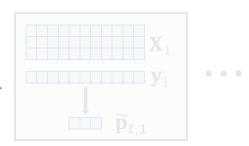


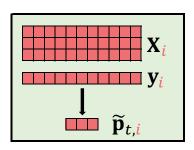


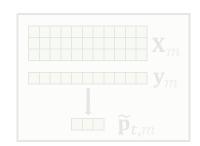


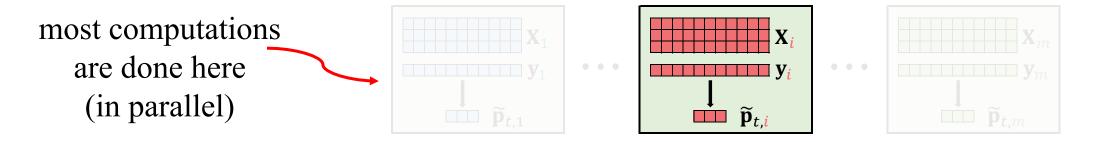


most computations are done here (in parallel)









Naïve approach:

- 1. Form local Hessian $\widetilde{\mathbf{H}}_i \in \mathbb{R}^{d \times d}$
- 2. Invert $\widetilde{\mathbf{H}}_i$
- 3. The ANT direction $\tilde{\mathbf{p}}_{t,i} = \tilde{\mathbf{H}}_i^{-1} \mathbf{g}_t$

It is inefficient!

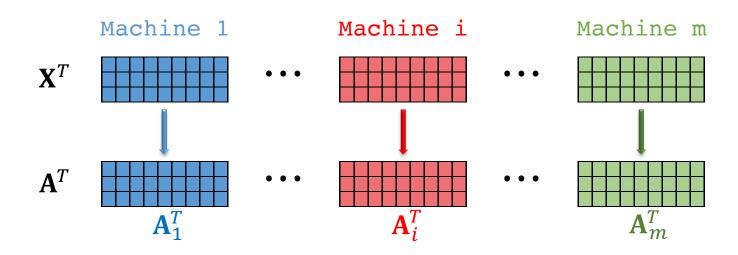
- 1. Multiply two matrices to form $\widetilde{\mathbf{H}}_i$
- 2. Invert the dense matrix $\widetilde{\mathbf{H}}_{i}$

most computations are done here (in parallel) $\tilde{p}_{t,i}$ $\tilde{p}_{t,i}$ $\tilde{p}_{t,m}$

Fact: For the problem

$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{j=1}^n l(\mathbf{w}; \mathbf{x}_j, y_j) + \gamma \|\mathbf{w}\|_2^2 \right\}$$
,

the local Hessian can be written as $\tilde{\mathbf{H}}_i = \mathbf{A}_i^T \mathbf{A}_i + \gamma \mathbf{I}_d$.



most computations are done here (in parallel) $\widetilde{p}_{t,i}$ $\widetilde{p}_{t,i}$ $\widetilde{p}_{t,m}$

Fact: For the problem

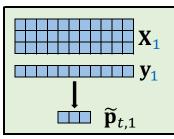
$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{j=1}^n l(\mathbf{w}; \mathbf{x}_j, y_j) + \gamma ||\mathbf{w}||_2^2 \right\} ,$$

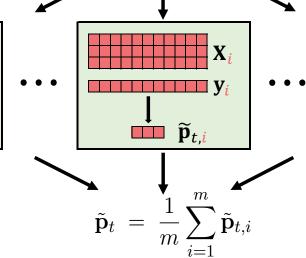
the local Hessian can be written as $\widetilde{\mathbf{H}}_i = \mathbf{A}_i^T \mathbf{A}_i + \gamma \mathbf{I}_d$.

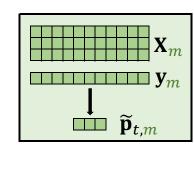
Local solver:

- Inexactly solve $(\mathbf{A}_i^T \mathbf{A}_i + \gamma \mathbf{I}_d)\mathbf{p} = \mathbf{g}_t$ by taking q CG steps.
- Cost: 2q matrix-vector products.

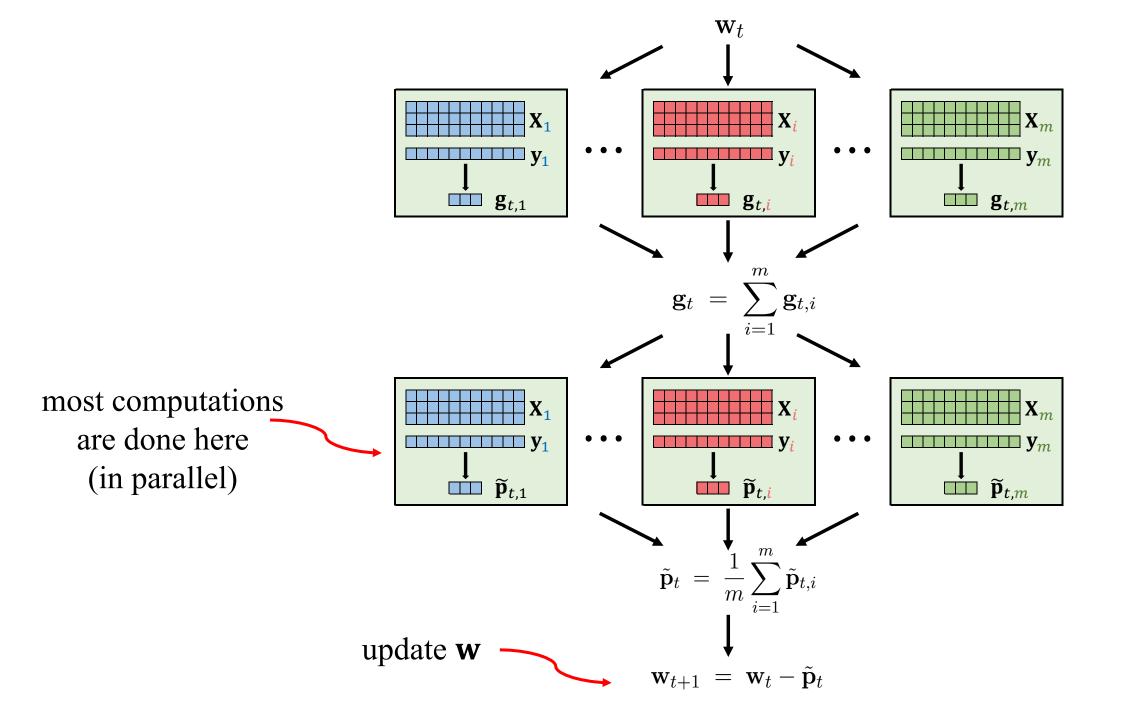
most computations are done here (in parallel)







$$\mathbf{w}_{t+1} = \mathbf{w}_t - \tilde{\mathbf{p}}_t$$



GIANT: Experiments

Settings

• Solve the ℓ_2 -regularized logistic regression:

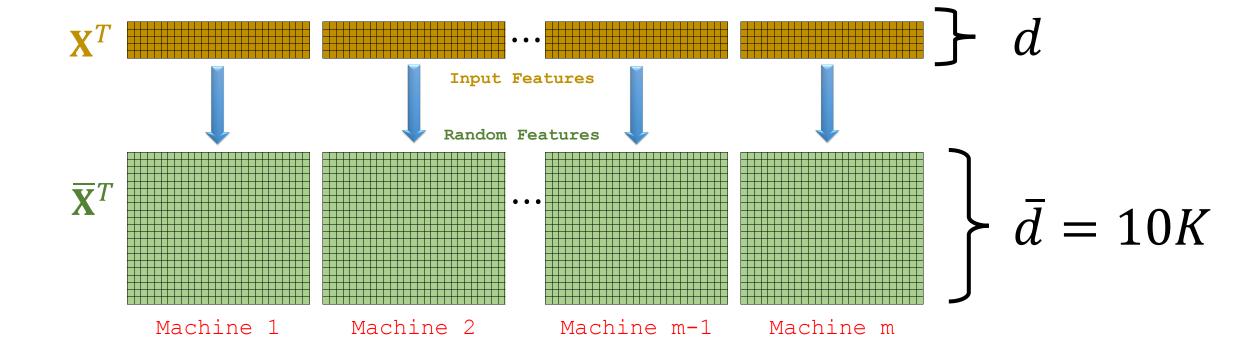
$$\min_{\mathbf{w} \in \mathbb{R}^d} \left\{ f(\mathbf{w}) \triangleq \frac{1}{n} \sum_{j=1}^n \log \left(1 + e^{-y_j \mathbf{x}_j^T \mathbf{w}} \right) + \frac{\gamma}{2} ||\mathbf{w}||_2^2 \right\}$$

Datasets

- Covtype: n = 581K, d = 54.
- Epsilon: n = 500K, d = 2K.
- 80% for training, 20% for test.

Datasets

- Covtype: n = 581K, d = 54.
- Epsilon: n = 500K, d = 2K.
- 80% for training, 20% for test.



- Accelerated gradient descent (AGD)
 - choose *step size* from {0.1, 1, 10, 100}
 - choose *momentum* from {0.5, 0.9, 0.95, 0.99, 0.999}

- Accelerated gradient descent (AGD)
- Limited memory BFGS (a quasi-Newton method)
 - choose *number of history* from {30, 100, 300}
 - line search is used

- Accelerated gradient descent (AGD)
- Limited memory BFGS
- DANE (another Newton-type method) [Shamir et al. 2014]
 - local solver: SVRG (a stochastic optimization method)
 - choose *step size of SVRG* from {0.1, 1, 10, 100}
 - choose max. iteration of SVRG from {30, 100, 300}

Reference:

Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.

- Accelerated gradient descent (AGD)
- Limited memory BFGS
- DANE (another Newton-type method)
- GIANT
 - local solver: conjugate gradient (CG)
 - choose *max iteration of CG* from {30, 100, 300}

- Accelerated gradient descent (AGD)
- Limited memory BFGS
- DANE (another Newton-type method)
- GIANT

- 2 Tuning Parameters
- 1 Tuning Parameter
- 2 Tuning Parameters
- 1 Tuning Parameter

Experiment Environment

• Spark 2.1.1 + Scala 2.11.8

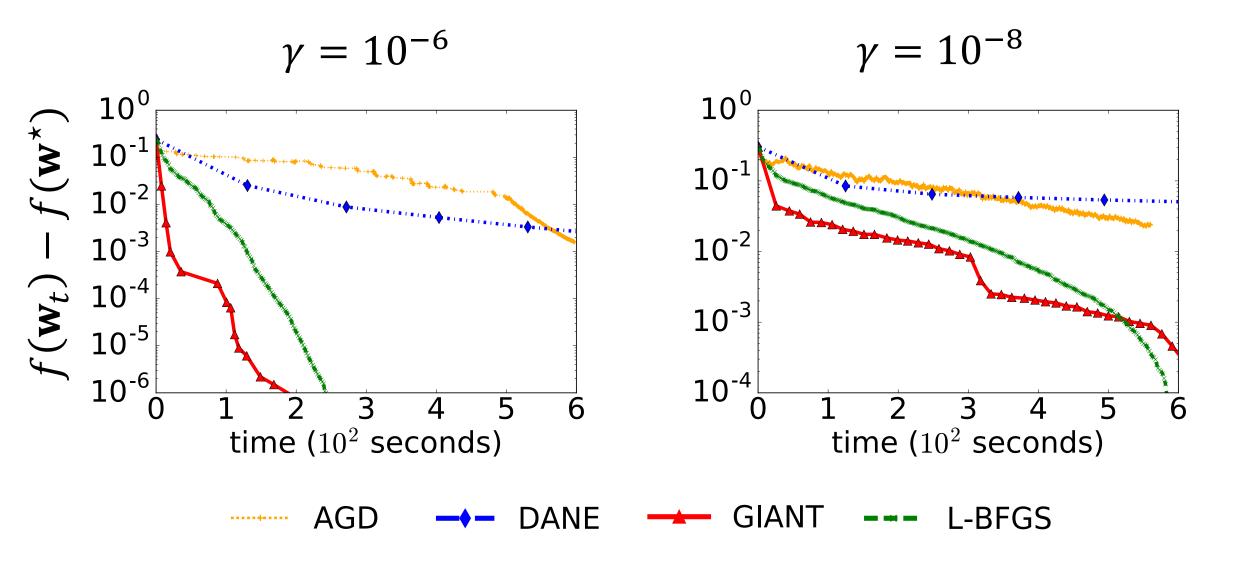
Experiment Environment

- Spark 2.1.1 + Scala 2.11.8
- Cori Supercomputer (Cray XC40)

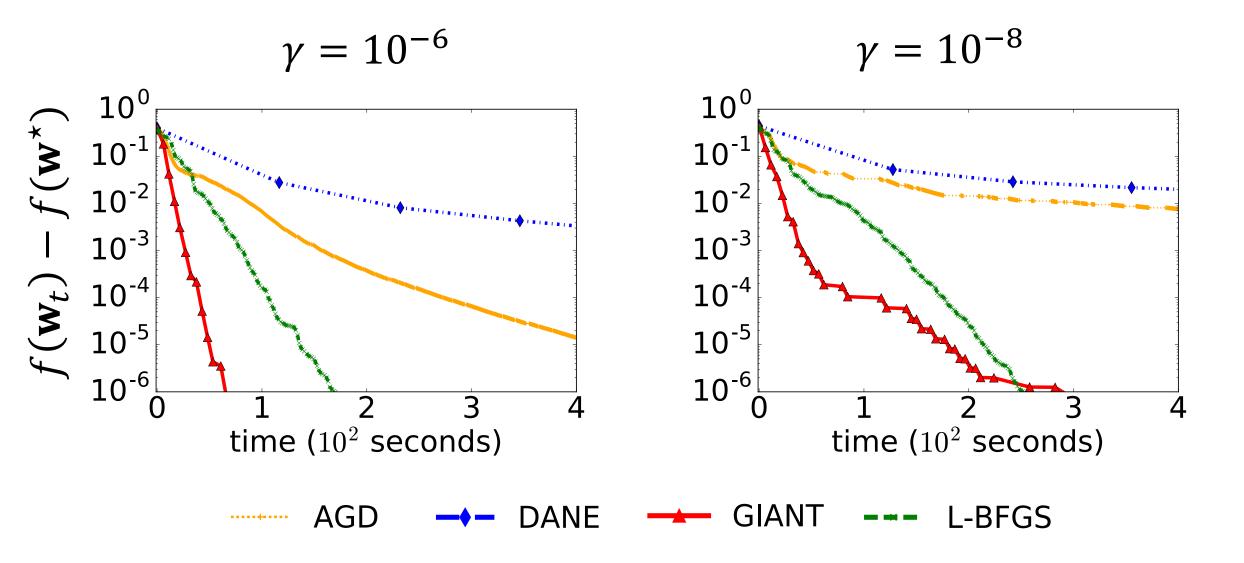
Experiment Environment

- Spark 2.1.1 + Scala 2.11.8
- Cori Supercomputer (Cray XC40)
 - 128 GB Memory / node
 - 32 Cores / node
- Use 15 nodes (480 CPU cores)

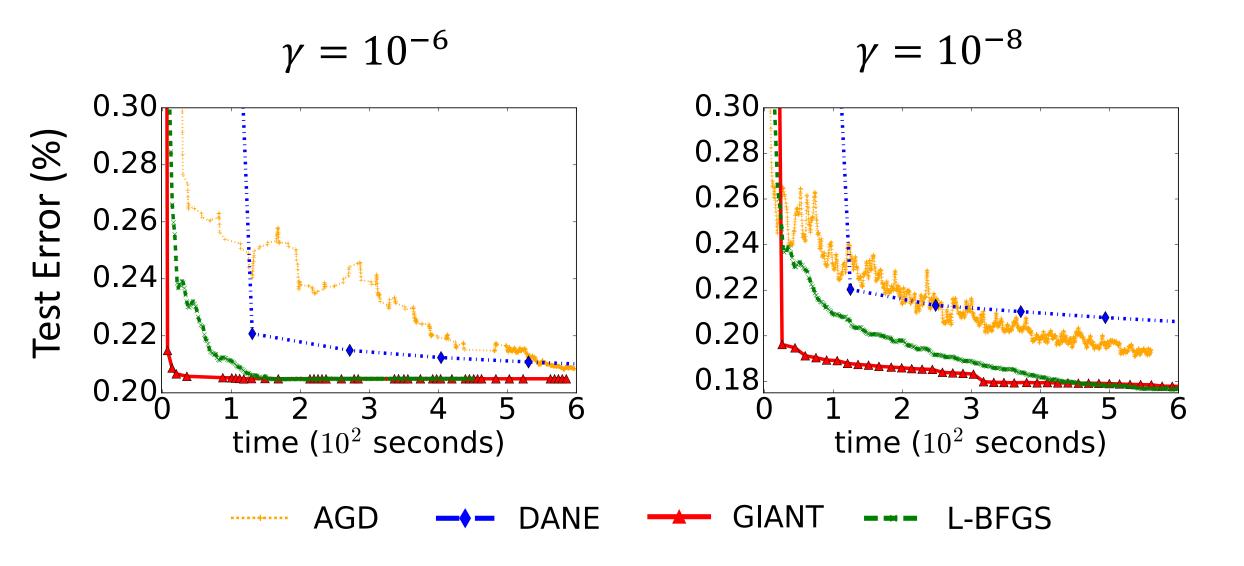
Covtype (n=581K, \bar{d} =10K), Training



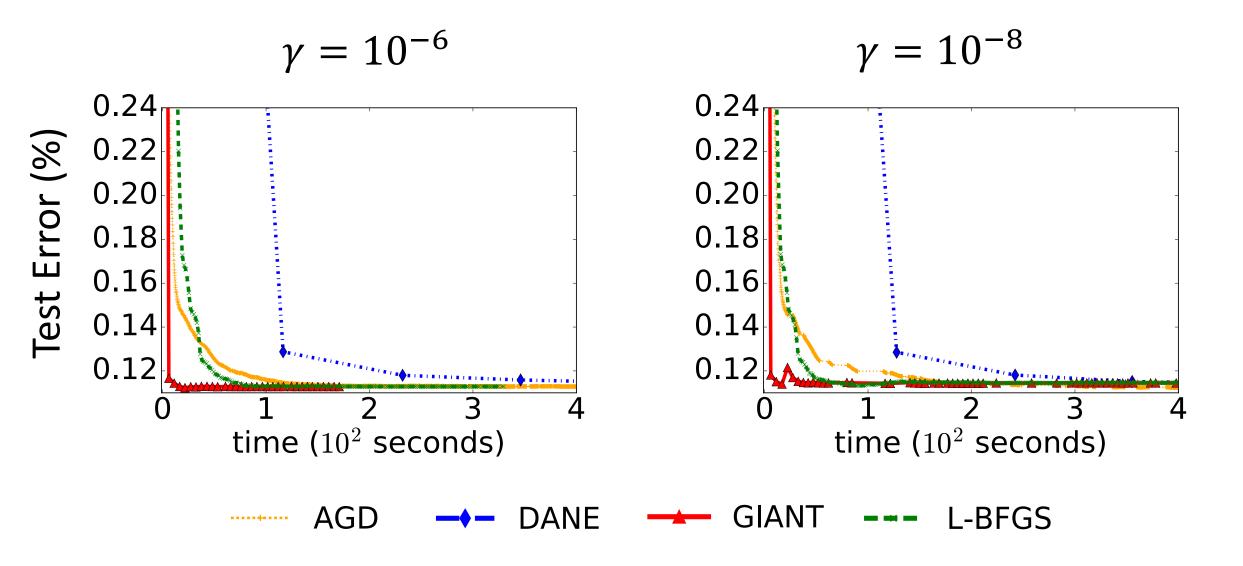
Epsilon (n=500K, \bar{d} =10K), Training



Covtype (n=581K, \bar{d} =10K), Test



Epsilon (n=500K, \bar{d} =10K), Test

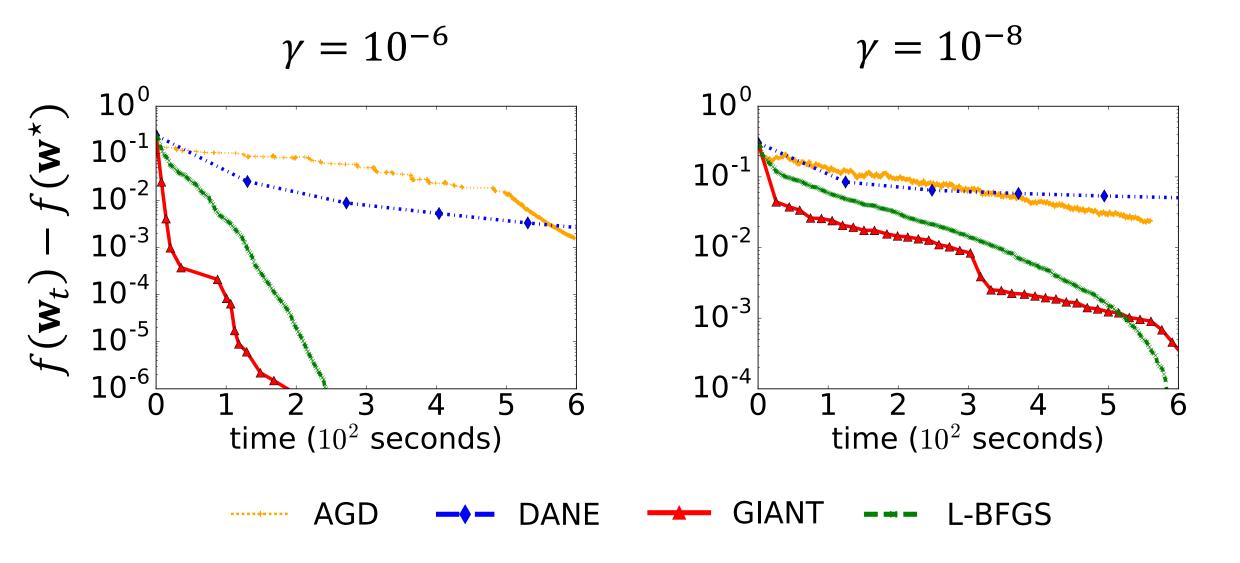


Scaling Experiments

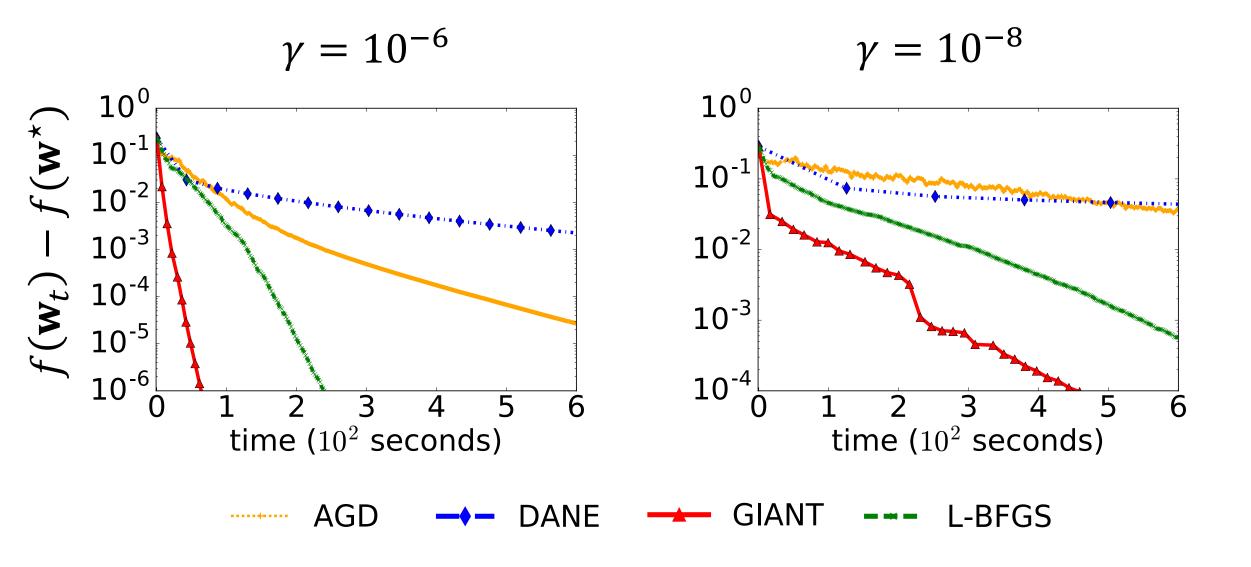
- Make the Covtype data k times larger.
 - 1. Get k replicates of X and y;
 - 2. Inject i.i.d. Gaussian noises to the $kn \times d$ feature matrix;
 - 3. Do random feature mapping to get 10K features.
- Use k times more nodes.

• Set k = 5 and k = 25.

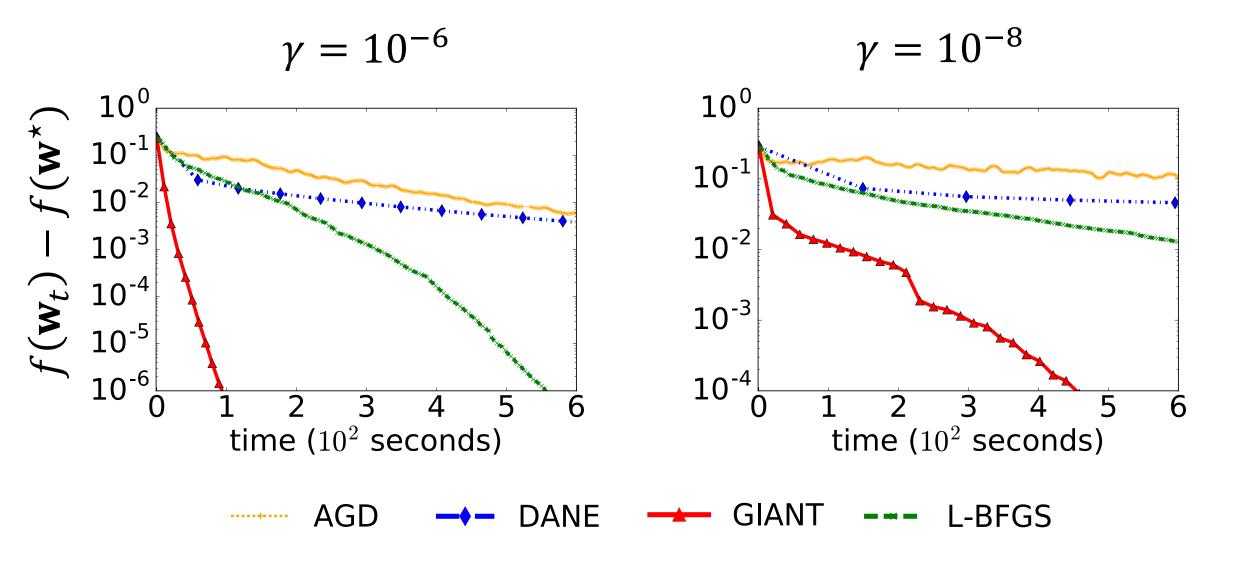
Original Data, 15 Nodes (480 Cores)



5x Larger Data, 75 Nodes (2.4K Cores)



25x Larger Data, 375 Nodes (12K Cores)

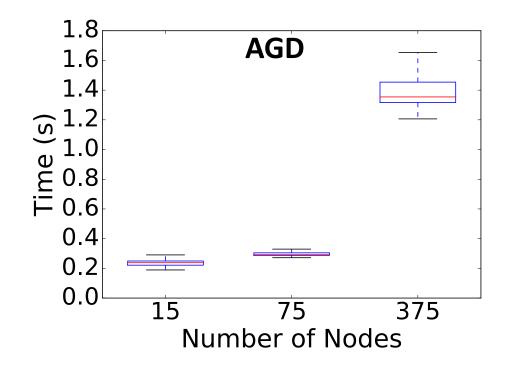


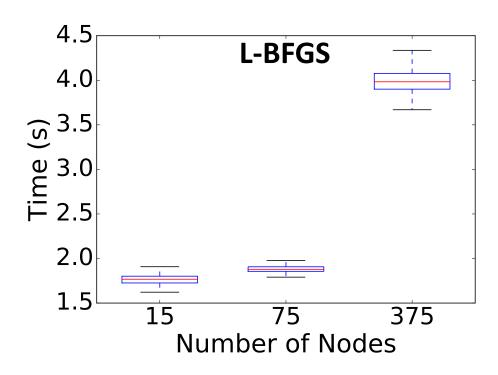
Why is GIANT More Scalable?

- As #Samples and #Nodes both increases by k times,
 - the **computational** costs remain **the same**;
 - the communication costs increase.

Why is GIANT More Scalable?

- As #Samples and #Nodes both increases by k times,
 - the computational costs remain the;
 - the communication costs increase.
- Per-iteration time of AGD and L-BFGS increases.

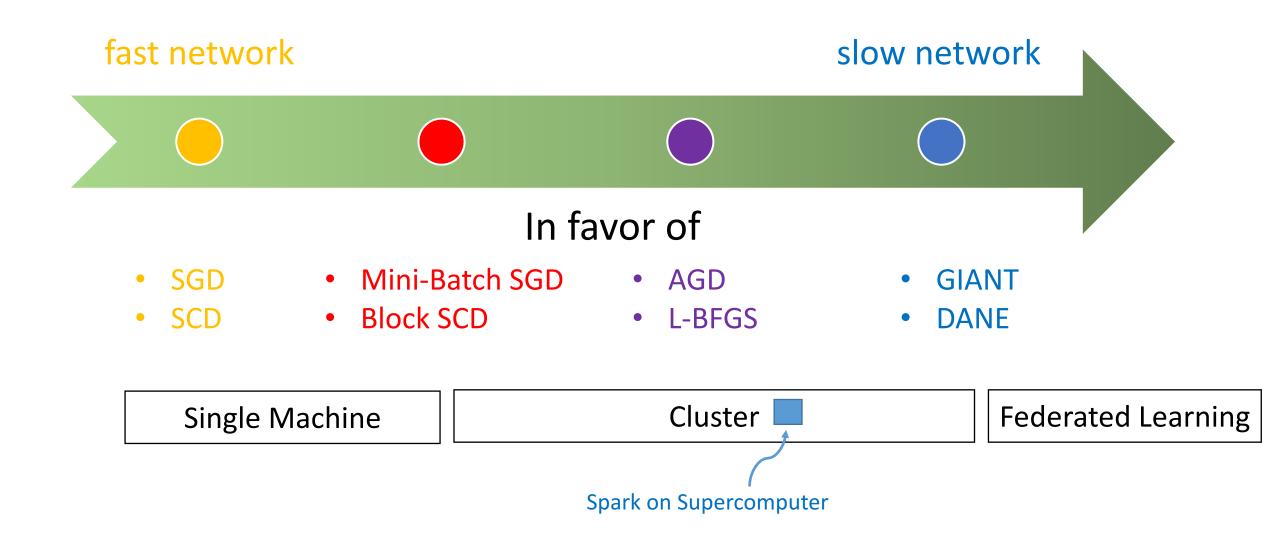




Why is GIANT More Scalable?

- As #Samples and #Nodes both increases by k times,
 - the computational costs remain the;
 - the communication costs increase.
- Per-iteration time of AGD and L-BFGS increases.
- Per-iteration time of GIANT marginally increases.
 - Because GIANT is computation-intensive.

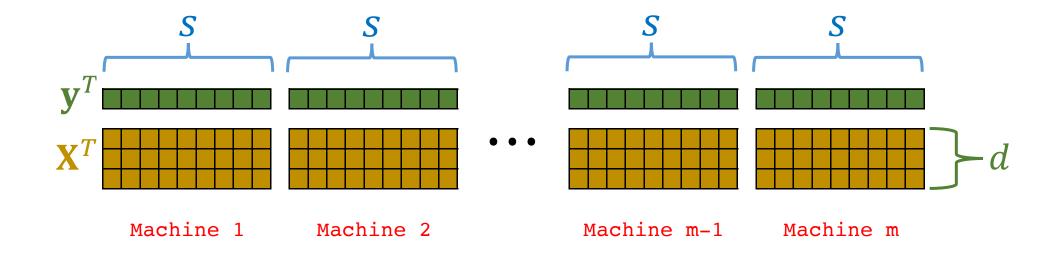
FLOPs versus Communication



GIANT: Convergence Analysis

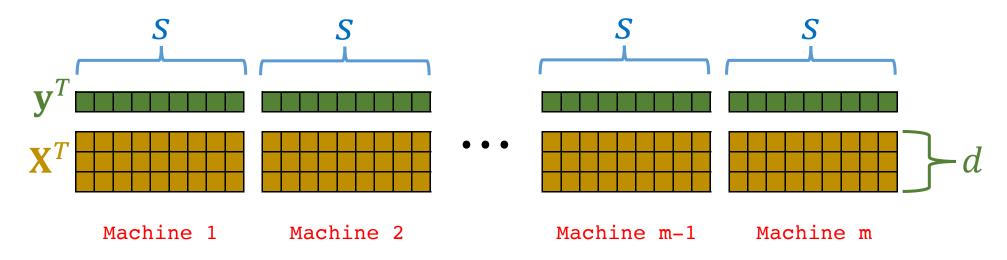
• Objective function: $f(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$

- Objective function: $f(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} \mathbf{y}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$
- Assume X is "incoherent" (information uniformly spread)
- Assume local sample size is $s = \Theta(\frac{d}{\epsilon^2} \log \frac{md}{\delta})$ for any $\epsilon, \delta \in (0, 1)$



- Objective function: $f(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} \mathbf{y}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$
- Assume X is "incoherent" (information uniformly spread)
- Assume local sample size is $s = \Theta(\frac{d}{\epsilon^2} \log \frac{md}{\delta})$ for any $\epsilon, \delta \in (0,1)$
- With probability $1-\delta$ (assume random partition of the data),

$$\frac{\|\boldsymbol{\Delta}_t\|_2}{\|\boldsymbol{\Delta}_0\|_2} \leq \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2\right)^t \sqrt{\kappa}, \quad \text{where } \boldsymbol{\Delta}_t \triangleq \mathbf{w}_t - \mathbf{w}^*.$$



• Objective function: $f(\mathbf{w}) = \frac{1}{2n} \|\mathbf{X}\mathbf{w} - \mathbf{y}\|_2^2 + \frac{\gamma}{2} \|\mathbf{w}\|_2^2$ • Ass GIANT has log κ dependence. • Assume local sample size is $s = \Theta(\frac{a}{2} \log \frac{ma}{\delta})$ • With probability $1 - \delta$ (assume random p AGD has $\sqrt{\kappa}$ dependence.

Machine m-1

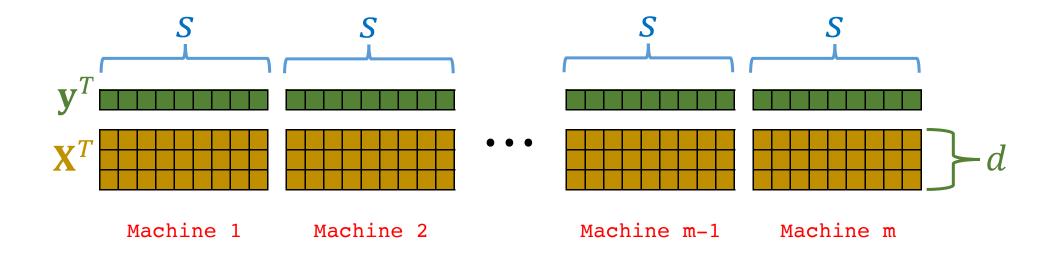
Machine m

Machine 1

Machine 2

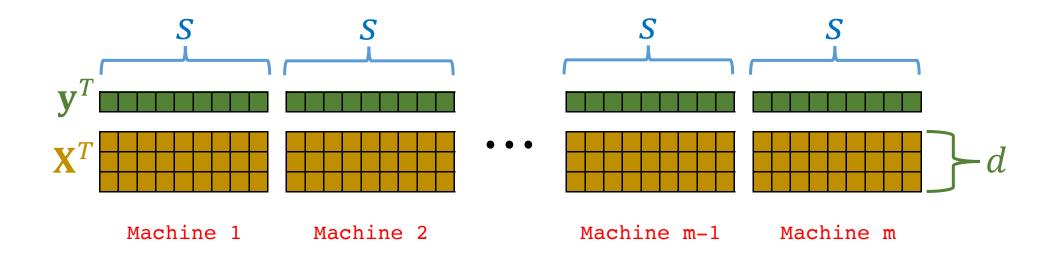
General Smooth Loss: Local Convergence

- Denote $\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$ and $\mathbf{H}^{\star} = \nabla^2 f(\mathbf{w}^{\star})$
- Similar "incoherent" assumption (information uniformly spread)
- Assume local sample size is $s = \Theta(\frac{d}{\epsilon^2} \log \frac{md}{\delta})$ for any $\epsilon, \delta \in (0, 1)$



General Smooth Loss: Local Convergence

- Denote $\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$ and $\mathbf{H}^{\star} = \nabla^2 f(\mathbf{w}^{\star})$
- Similar "incoherent" assumption (information uniformly spread)
- Assume local sample size is $s = \Theta(\frac{d}{\epsilon^2} \log \frac{md}{\delta})$ for any $\epsilon, \delta \in (0, 1)$
- Assume the Hessian is L-Lipchitz: $\|\nabla^2 f(\mathbf{w}) \nabla^2 f(\mathbf{w}')\|_2 \le L\|\mathbf{w} \mathbf{w}'\|_2$



General Smooth Loss: Local Convergence

- Denote $\mathbf{H}_t = \nabla^2 f(\mathbf{w}_t)$ and $\mathbf{H}^{\star} = \nabla^2 f(\mathbf{w}^{\star})$
- Similar "incoherent" assumption (information uniformly spread)
- Assume local sample size is $s = \Theta(\frac{d}{\epsilon^2} \log \frac{md}{\delta})$ for any $\epsilon, \delta \in (0, 1)$
- Assume the Hessian is L-Lipchitz: $\|\nabla^2 f(\mathbf{w}) \nabla^2 f(\mathbf{w}')\|_2 \le L\|\mathbf{w} \mathbf{w}'\|_2$
- With probability $1-\delta$ (assume random partition of the data),

$$\|\boldsymbol{\Delta}_{t+1}\|_{2} \leq \max \left\{ \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^{2} \right) \sqrt{\frac{\sigma_{\max}(\mathbf{H}_{t})}{\sigma_{\min}(\mathbf{H}_{t})}} \|\boldsymbol{\Delta}_{t}\|_{2}, \frac{2L}{\sigma_{\min}(\mathbf{H}_{t})} \|\boldsymbol{\Delta}_{t}\|_{2}^{2} \right\}$$
Linear Quadratic

Inexactly Solving Local Linear System

- Exactly solving $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ may not be easy.
- Solve $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ by taking $q = \frac{\sqrt{\kappa}-1}{2}\log\frac{8}{\epsilon_0^2}$ CG steps.
- Recall the bounds of exact solver:

Quadratic Loss:
$$\frac{\|\mathbf{\Delta}_t\|_2}{\|\mathbf{\Delta}_0\|_2} \leq \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2\right)^t \sqrt{\kappa}$$
, where $\mathbf{\Delta}_t \triangleq \mathbf{w}_t - \mathbf{w}^*$.

General Loss:
$$\|\boldsymbol{\Delta}_{t+1}\|_{2} \leq \max \left\{ \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^{2} \right) \sqrt{\frac{\sigma_{\max}(\mathbf{H}_{t})}{\sigma_{\min}(\mathbf{H}_{t})}} \|\boldsymbol{\Delta}_{t}\|_{2}, \frac{2L}{\sigma_{\min}(\mathbf{H}_{t})} \|\boldsymbol{\Delta}_{t}\|_{2}^{2} \right\}$$

Inexactly Solving Local Linear System

- Exactly solving $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ may not be easy.
- Solve $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ by taking $q = \frac{\sqrt{\kappa}-1}{2}\log\frac{8}{\epsilon_0^2}$ CG steps.
- Recall the bounds of exact solver:

Quadratic Loss:
$$\frac{\|\Delta_t\|_2}{\|\Delta_0\|_2} \leq \left[\left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \right)^t \sqrt{\kappa}, \quad \text{where } \Delta_t \triangleq \mathbf{w}_t - \mathbf{w}^*.$$
General Loss:
$$\left\| \Delta_{t+1} \right\|_2 \leq \max \left\{ \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \right) \sqrt{\frac{\sigma_{\max}(\mathbf{H}_t)}{\sigma_{\min}(\mathbf{H}_t)}} \left\| \Delta_t \right\|_2, \ \frac{2L}{\sigma_{\min}(\mathbf{H}_t)} \left\| \Delta_t \right\|_2^2 \right\}$$

• Bounds of the inexact solver:

$$\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \implies \frac{\epsilon}{\sqrt{m}} + \epsilon^2 + \epsilon_0$$

Inexactly Solving Local Linear System

- Exactly solving $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ may not be easy.
- Solve $\widetilde{\mathbf{H}}_{t,i}\mathbf{p} = \mathbf{g}_t$ by taking $q = \frac{\sqrt{\kappa}-1}{2}\log\frac{8}{\epsilon_0^2}$ CG steps.
- Recall the bounds of exact solver:

Quadratic Loss:
$$\frac{\|\Delta_t\|_2}{\|\Delta_0\|_2} \leq \left[\left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \right)^t \sqrt{\kappa}, \quad \text{where } \Delta_t \triangleq \mathbf{w}_t - \mathbf{w}^*.$$
General Loss:
$$\left\| \Delta_{t+1} \right\|_2 \leq \max \left\{ \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \right) \sqrt{\frac{\sigma_{\max}(\mathbf{H}_t)}{\sigma_{\min}(\mathbf{H}_t)}} \left\| \Delta_t \right\|_2, \ \frac{2L}{\sigma_{\min}(\mathbf{H}_t)} \left\| \Delta_t \right\|_2^2 \right\}$$

Bounds of the inexact solver:

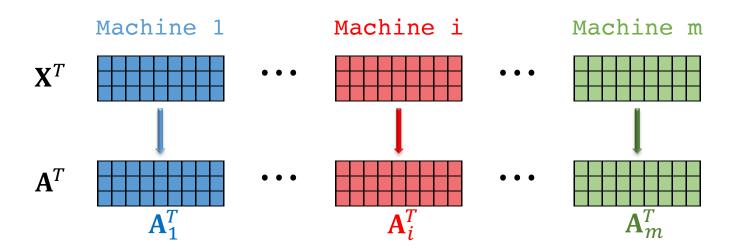
$$\frac{\epsilon}{\sqrt{m}} + \epsilon^2 \implies \frac{\epsilon}{\sqrt{m}} + \epsilon^2 + \epsilon_0$$

Outline of Proof

Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \cdots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

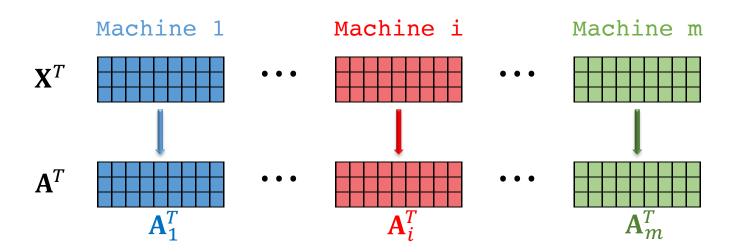
Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \dots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

• **H** can always be written as $\mathbf{H} = \mathbf{A}^T \mathbf{A} + \gamma \mathbf{I}_d$, for some $\mathbf{A} \in \mathbb{R}^{n \times d}$.



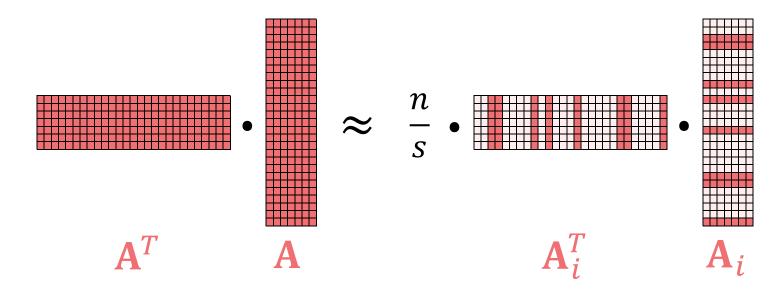
Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \dots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

- **H** can always be written as $\mathbf{H} = \mathbf{A}^T \mathbf{A} + \gamma \mathbf{I}_d$, for some $\mathbf{A} \in \mathbb{R}^{n \times d}$.
- Assume A is "incoherent".
- Uniformly partition **A** to form $\mathbf{A}_i \in \mathbb{R}^{s \times d}$.



Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \dots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

- **H** can always be written as $\mathbf{H} = \mathbf{A}^T \mathbf{A} + \gamma \mathbf{I}_d$, for some $\mathbf{A} \in \mathbb{R}^{n \times d}$.
- Assume A is "incoherent".
- Uniformly partition **A** to form $\mathbf{A}_i \in \mathbb{R}^{s \times d}$.



Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \dots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

- **H** can always be written as $\mathbf{H} = \mathbf{A}^T \mathbf{A} + \gamma \mathbf{I}_d$, for some $\mathbf{A} \in \mathbb{R}^{n \times d}$.
- Assume A is "incoherent".
- Uniformly partition **A** to form $\mathbf{A}_i \in \mathbb{R}^{s \times d}$.
- Sufficiently large samples size $s = \Theta(\frac{d}{\epsilon^2} \log \frac{d}{\delta})$
- By matrix Bernstein (concentration inequality), with probability $1-\delta$,

$$(1 - \epsilon)\mathbf{A}^T\mathbf{A} \leq \frac{n}{s} \mathbf{A}_i^T\mathbf{A}_i \leq (1 + \epsilon)\mathbf{A}^T\mathbf{A}.$$

Claim 1: Local Hessian $\widetilde{\mathbf{H}}_1, \dots, \widetilde{\mathbf{H}}_m$ well approximate the true Hessian \mathbf{H} .

- **H** can always be written as $\mathbf{H} = \mathbf{A}^T \mathbf{A} + \gamma \mathbf{I}_d$, for some $\mathbf{A} \in \mathbb{R}^{n \times d}$.
- Assume A is "incoherent".
- Uniformly partition **A** to form $\mathbf{A}_i \in \mathbb{R}^{s \times d}$.
- Sufficiently large samples size $s = \Theta(\frac{d}{\epsilon^2} \log \frac{d}{\delta})$
- By matrix Bernstein (concentration inequality), with probability $1-\delta$,

$$(1 - \epsilon)\mathbf{A}^T\mathbf{A} \leq \frac{n}{s} \mathbf{A}_i^T\mathbf{A}_i \leq (1 + \epsilon)\mathbf{A}^T\mathbf{A}.$$

• Note that $\widetilde{\mathbf{H}}_{i} = \frac{n}{s} \mathbf{A}_{i}^{T} \mathbf{A}_{i} + \gamma \mathbf{I}_{d} \longrightarrow \widetilde{\mathbf{H}}_{i}$ well approximates \mathbf{H} .

Claim 2: The GIANT direction approximates $\mathbf{p}^* = \mathbf{H}^{-1}\mathbf{g}$.

• Define the quadratic function $\phi(\mathbf{p}) \triangleq \frac{1}{2}\mathbf{p}^T\mathbf{H}\mathbf{p} - \mathbf{p}^T\mathbf{g} \ (\leq 0)$

 $\textbf{Figure 1} \quad \textbf{Newton direction } \textbf{p}^{\star}$

Claim 2: The GIANT direction approximates $\mathbf{p}^* = \mathbf{H}^{-1}\mathbf{g}$.

- Define the quadratic function $\phi(\mathbf{p}) \triangleq \frac{1}{2}\mathbf{p}^T\mathbf{H}\mathbf{p} \mathbf{p}^T\mathbf{g} \ (\leq 0)$
- The exact Newton direction is $\mathbf{p}^{\star} = \mathbf{H}^{-1}\mathbf{g} = \underset{\mathbf{p}}{\operatorname{argmin}} \phi(\mathbf{p})$

Claim 2: The GIANT direction approximates $\mathbf{p}^* = \mathbf{H}^{-1}\mathbf{g}$.

- Define the quadratic function $\phi(\mathbf{p}) \triangleq \frac{1}{2}\mathbf{p}^T\mathbf{H}\mathbf{p} \mathbf{p}^T\mathbf{g} \quad (\leq 0)$
- The exact Newton direction is $\mathbf{p}^{\star} = \mathbf{H}^{-1}\mathbf{g} = \underset{\mathbf{p}}{\operatorname{argmin}} \phi(\mathbf{p})$
- The GIANT directions is $\tilde{\mathbf{p}} \triangleq \frac{1}{m} \sum_{i=1}^{m} \tilde{\mathbf{p}}_i \triangleq \frac{1}{m} \sum_{i=1}^{m} \tilde{\mathbf{H}}_i^{-1} \mathbf{g}$
- Conditioning on Claim 1 that $\widetilde{\mathbf{H}}_i$ well approximates \mathbf{H}_i , we get

$$\phi(\mathbf{p}^{\star}) \leq \phi(\tilde{\mathbf{p}}) \leq (1 - \alpha^2) \cdot \phi(\mathbf{p}^{\star}), \quad \text{where } \alpha = \left(\frac{\epsilon}{\sqrt{m}} + \epsilon^2\right)$$

Reference:

W, Gittens, & Mahoney: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging. In ICML 2017.

- 1. Use Claim 2 that $\phi(\mathbf{p}^*) \leq \phi(\tilde{\mathbf{p}}) \leq (1 \alpha^2) \cdot \phi(\mathbf{p}^*)$, where $\alpha = (\frac{\epsilon}{\sqrt{m}} + \epsilon^2)$
- 2. Follow the standard convergence analysis of Newton's method.

Convergence of GIANT!

- GIANT's theory beats the existing works.
 - Assume the objective function is strongly convex and Lipschitz smooth.
- GIANT has good empirical performance on computer cluster.
 - Beats AGD, L-BFGS, and DANE.

- GIANT's theory beats the existing works.
 - Assume the objective function is strongly convex and Lipschitz smooth.
- GIANT has good empirical performance on computer cluster.

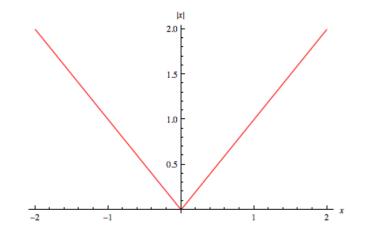
- - Assume the objective function is strongly convex and Lipschitz smooth.

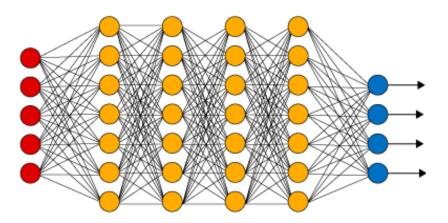
• GIANT has good • Counter-examples

LASSO

Neural Networks

$$f(\mathbf{w}) = \frac{1}{2n} \sum_{j=1}^{n} (\mathbf{w}^{T} \mathbf{x}_{j} - y_{j})^{2} + \gamma ||\mathbf{w}||_{1}$$





- GIANT's theory beats the existing works.
 - Assume the objective function is strongly convex and Lipschitz smooth.

Extensions of GIANT (our future work):

Proximal method

Trust-region method

Thank You!