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Background & Motivation



Optimization

* We consider the empirical risk minimization problem:

min {f(W) = %Zﬂ;l(w; Xj»yj)+7“(w)}

weEeRd

e Examples:

Linear Regression Linear Classification Neural Networks



Optimization

* How to solve the optimization problem min f(w) ?
\"\'4

1. Write some code / find a package.
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Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.

e —

Disk Random-access memory
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Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.
3. Run the code.

* What if the data do not fit in memory?



Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.
3. Run the code.

 What if the data do not fit in memory?
* What if the computation is too expensive for a single machine?
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Distributed Optimization
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Distributed Optimization
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Distributed Optimization

T
o I Ty T TITTITT] [(TTTTTITT] LTI TITITITT] Labels
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Machine 1 Machine 2 Machine m-1 Machine m

e (X1,v1),, (X, y,) are split among m machines.



Distributed Optimization

Ideally,

. % of the data fit in the memory of one machine;

* each machine does % of the computation == mx Speedup .



Distributed Optimization

Ideally,

. i of the data fit in the memory of one machine;

. 1 .
* each machine does — of the computation ==y mx up .

Do not overlook the communication!



Distributed Optimization: Example

Solve the problem:

min {f(W) = %il(“’; Xjay:/)““(w)}

weERd

Accelerated Gradient Descent (AGD) repeats:

1. Compute gradient: g = Vf(wga);
2.  Update momentum: = +g, 05p6<1;

3. Update model: Whew = Wold — &



Warm-up: Distributed AGD
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Warm-up: Distributed AGD

* Time complexity:
nd
0 (?) FLOPs per

iteration.

* One Broadcast
and one Reduce
per iteration.

e Lots of iterations to
converge =» lots of
communications.



Warm-up: Distributed AGD

Cost = Computation + Communication




AGD for ¢,-Regularized Logistic Regression
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FLOPs versus Communications

fast network slow network

In favor of
e SGD e Mini-Batch SGD e Full GD
e SCD e Block SCD e L-BFGS

Single Machine Cluster Federated Learning
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FLOPs versus Communications

slow network

In favor of
* Mini-Batch SGD * FullGD P P
¢ Block SCD e L-BFGS ' '

Single Machine Cluster Federated Learning




Distributed Optimization

Summary

1. For big-data problems, distributed optimization is very useful.

2. If the network is slow, then communication is the bottleneck.

* Recall: Cost = Computation + Communication



Communication-Efficient Optimization



Motivation

Basic ideas:
1. Let worker machines do lots of local computations.
2.  Communicate as few as possible.



Prior Work

Existing communication-efficient methods:

* CoCoA

* DANE They make assumptions, e.g.,

e AIDE * objective function is strongly convex and Lipschitz smooth
o
o
o

Reference:
1. Smith, Forte, Ma, Takac, Jordan, & Jaggi. CoCoA: A General Framework for Communication-Efficient Distributed Optimization.

2. Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.
3. Reddi, Konecny, Richtarik, Poczds, & Smola. AIDE: Fast and Communication Efficient Distributed Optimization.



Prior Work

Existing communication-efficient methods:

* CoCoA Recall Accelerated Gradient Descent (AGD)

* DANE e 0 (\/Elog%) iterations

* AIDE * 2 communications per iteration Baseline!
o c 0 (%) FLOPs per iterations
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Prior Work

Existing communication-efficient methods:

* CoCoA Recall Accelerated Gradient Descent (AGD)

* DANE e 0 (\/Elog%) iterations

* AIDE * 2 communications per iteration Baseline!
o e 0 (%) FLOPs per iterations

Do their convergence bounds beat AGD?
* |n terms of communication, NO!
* |nterms of computation, NO!




Prior Work

Existing communication-efficient methods:

* CoCoA
e DANE
e AIDE

If the objective function is quadratic, then DANE = GIANT!




GIANT: Overview



Globally Improved Approximate Newton (GIANT)

 GIANT is a distributed 2M9-order method.

e Each iteration has 4 rounds of communications.
e Broadcast or Reduce of one vector.

* Much faster convergence than AGD in terms of communication.
* Assume the objective function is strongly convex and Lipschitz smooth.




Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.



Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Examples
Linear regression Logistic regression
1 1 & T,
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Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks
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Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks

The regularization is non-smooth! The objective is non-convex!




Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks

The regularization is non-smooth! The objective is non-convex!

Extensions of GIANT (our future work):

Proximal methods Trust-region method




Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.



GIANT: Algorithm Description



Warm-up: Newton-CG

* Repeat until convergence
1. Compute gradient g and Hessian H;
2. Solve Hp = g by running tens/hundreds of CG steps;
3. Update w <« w — ap (find a by line search).



GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

In parallel, form the approximations:

H, ~ H H, ~H H, ,~H H,~H

In parallel, compute

~_1 ~

p, = Hi'g p, = H;'g b ,=H1l,8 p,=H

p = %Zi P; approximatesp = H™!g



GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

~ 1 ~ 1 ~ _ . _
P = gzl’pi = (EZiHi 1)8 approximates p = H 1g



GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

~ 1 . 1 C. . —
P=—2;D; = (;ZiHi 1)g approximates p = H™'g

* GIANT uses the exact gradient g.
-1
* GIANT approximates the Hessian matrix H by ( D H-_l) :

1
m
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(ANT) directions



most computations

are done here

(in parallel)
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most computations

are done here \

(in parallel)




most computations X

are done here \ IIIIIIIIT1y

(in parallel) D%: i

Naive approach:

1. Form local Hessian H; € R%*4

2. Invert ﬁi
3. The ANT direction ﬁt’i = ﬁ{l g;:

It is inefficient!

1. Multiply two matrices to form H;

2. Invert the dense matrix ﬁi



most computations REEREEREERE)'Y
are done here SESEERENERE]S

(in parallel) L B,

Fact: For the problem

n

S iw x;5) +7HWH3} ,

j=1

1
n

min, { f(w) £

weERd

the local Hessian can be written as H; = ALTAL- + yl,.

Machine 1 Machine 1 Machine m




most computations X

are done here \ IIIIIIIIT1y

(in parallel) Eéj B.

Fact: For the problem

n

A 1
min {f(w) = EZZ(W; Xj;in)""YH“’H%} )

d
wEeR =1

the local Hessian can be written as H; = AlTAl- + yl,.

Local solver:

* |nexactly solve (ALTAL- + yld)p = g, by taking g CG steps.

* Cost: 2g matrix-vector products.




most computations

are done here

(in parallel)
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GIANT: Experiments



Settings
* Solve the £,-regularized logistic regression:

1 « T
min {f(w) = 5Zlog(1—|—e v )—|—%HWH%}

d
weR =1



Datasets

* Covtype: n = 581K, d = 54.
e Epsilon: n = 500K, d = 2K.
* 80% for training, 20% for test.



Datasets

* Covtype: n = 581K, d = 54.
e Epsilon: n = 500K, d = 2K.
* 80% for training, 20% for test.

Input Features

T T o d
1 Random Features l
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Machine 1 Machine 2 Machine m-1 Machine m




Compared Methods

* Accelerated gradient descent (AGD)
* choose step size from {0.1, 1, 10, 100}
e choose momentum from {0.5, 0.9, 0.95, 0.99, 0.999}



Compared Methods

* Accelerated gradient descent (AGD)

* Limited memory BFGS (a quasi-Newton method)
* choose number of history from {30, 100, 300}
* line search is used



Compared Methods

* Accelerated gradient descent (AGD)
* Limited memory BFGS

* DANE (another Newton-type method) [Shamir et al. 2014]
* local solver: SVRG (a stochastic optimization method)
* choose step size of SVRG from {0.1, 1, 10, 100}
* choose max. iteration of SVRG from {30, 100, 300}

Reference:
Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.



Compared Methods

* Accelerated gradient descent (AGD)

* Limited memory BFGS

 DANE (another Newton-type method)
* GIANT

* local solver: conjugate gradient (CG)
e choose max iteration of CG from {30, 100, 300}



Compared Methods

Tuning Parameters

* Accelerated gradient descent (AGD)

* Limited memory BFGS

Tuning Parameter

 DANE (another Newton-type method)

Tuning Parameters

= IS R S

* GIANT

Tuning Parameter




Experiment Environment

* Spark 2.1.1 + Scala 2.11.8

Spqﬁg FScala



Experiment Environment

* Spark 2.1.1 + Scala 2.11.8
* Cori Supercomputer (Cray XC40)

National Energy Research
Scientific Computing Center

) BERKELEY LAB

Bringing Science Solutions to the World




Experiment Environment

* Spark 2.1.1 + Scala 2.11.8

* Cori Supercomputer (Cray XC40)
e 128 GB Memory / node
e 32 Cores / node

e Use 15 nodes (480 CPU cores)



fwy) — f(w™)

Covtype (n=581K, d=10K), Training

time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS



fwy) — f(w™)

Epsilon (n=500K, d=10K), Training
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Test Error (%)

Covtype (n=581K, d=10K), Test
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Test Error (%)

Epsilon (n=500K, d=10K), Test

y = 107
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Scaling Experiments

* Make the Covtype data k times larger.

1. Get k replicates of X and y;
2. Injecti.i.d. Gaussian noises to the knXd feature matrix;
3. Do random feature mapping to get 10K features.

e Use k times more nodes.

e Set k =5and k = 25.



fwy) — f(w™)

Original Data, 15 Nodes (480 Cores)

X

10— "3 3 4 5 ¢ 0 1 2 3 4 5
time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS
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fwy) — f(w™)

5>x Larger Data, 75 Nodes (2.4K Cores)

y =106 y = 1078
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time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS



25x Larger Data, 375 Nodes (12K Cores)

fwy) — f(w™)

time (10% seconds)

AGD  —¢= DANE
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Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the same;
* the communication costs increase.



Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the;
* the communication costs increase.

e Per-iteration time of AGD and L-BFGS increases.
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Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the;
* the communication costs increase.

e Per-iteration time of AGD and L-BFGS increases.

* Per-iteration time of GIANT marginally increases.
* Because GIANT is computation-intensive.



FLLOPs versus Communication

fast network slow network

In favor of
e SGD * Mini-Batch SGD e AGD  GIANT
« SCD * Block SCD e L-BFGS  DANE
Single Machine Cluster ! Federated Learning

/

Spark on Supercomputer



GIANT: Convergence Analysis



Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3



Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3
 Assume X is “incoherent” (information uniformly spread)

* Assume local sample size is s = ©(% log %) for any -, € (0,1)
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Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3
 Assume X is “incoherent” (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

* With probability 1 — 6 (assume random partition of the data),

*

2\? A _
AL < (ﬁ + *)'VEK, where Ay = wy—w".
S S S S

| | | |
l || | [ || |

y—— [(TITTTTITT] I IITTTd

AT T A
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Quadratic Loss: Global Convergence

GIANT has log k dependence.

AGD has +/k dependence.




General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)

* Assume local sample size is s = ©(% log %) for any -, € (0,1)
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General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

* Assume the Hessian is L-Lipchitz: [|[V2f(w)— V2f(w')||, < L|w — w'[|2

I
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General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

 Assume the Hessian is L-Lipchitz: [|[V2f(w) — V2f(w')|, < L|w — w'|2

I

* With probability 1 — 6 (assume random partition of the data),

[acall, < maxf () yEET A, A ]

Linear Quadratic



Inexactly Solving Local Linear System

* Exactly solving Iflt,l-p = g, may not be easy.
\/__

* Solve H; ;p = g, by taking ¢ = log 5 CG steps.

e Recall the bounds of exact solver:

Quadratic Loss: 1A« (o= + )V, where A; 2w, —w"

General Loss: A1), < max{(— + %) \/iza;‘((gf;\m

o il A}



Inexactly Solving Local Linear System

* Exactly solving I'-Vlt,l-p = g, may not be easy.
\/__

* Solve H; ;p = g, by taking ¢ = log 5 CG steps.

e Recall the bounds of exact solver:

Quadratic Loss: ”ﬁ—éuz < ‘ (ﬁ + 2)r \/E’ where Ay £ Wi — w*.
GeneralLoss: ([, < mox{( -+ OB Al s )

 Bounds of the inexact solver:

2 2
W‘F — ﬁ—l_ + €



Inexactly Solving Local Linear System

* Exactly solving I’-Vlt’l-p = g, may not be easy.

* Solve H, ;p = g, by taking |« = ¥~ log 5 | CG steps.
e Recall the bounds of exact solver:
Quadratic Loss: ”ﬁ_éuz < ‘ (ﬁ + 2)|’ VK, where A; 2w, —w”.
. 2 Omax H
General toss:  |Avnf, < max{l( + )/ EG AL i lad? ]

 Bounds of the inexact solver:

2

2
W‘F — ﬁ—l_ +l€o




Outline of Proof



Proof Techniques

Claim 1: Local Hessian Fll, oo ﬁm well approximate the true Hessian H.
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Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™**¢,
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Proof Techniques

Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,
* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,
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Proof Techniques

Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,
* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

“| S




Proof Techniques

Claim 1: Local Hessian Fll, oo ﬁm well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,

* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

» Sufficiently large samples size s = (% log 4)

* By matrix Bernstein (concentration inequality), with probability 1 — 9,

n
(1—-)ATA < EALTAL- < (1+ )ATA.



Proof Techniques

Claim 1: Local Hessian H;, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,

* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

» Sufficiently large samples size s = (% log 4)

* By matrix Bernstein (concentration inequality), with probability 1 — 9,

n
(1—-)ATA < EALTAL- < (1+ )ATA.

* Note that H; = %ALTAL- +yl, === H; well approximates H.



Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

AL

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

Newton direction p*

GIANT direction p



Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

AL

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

 The exact Newton directionis p* = H !'g = argmin ¢(p)
P



Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

* The exact Newton directionis p* = H'g = argmin »(p)

* The GIANT directionsis b = sz £ %i

* Conditioning on Claim 1 that H weII app_rOX|mates H, we get

o(p*) < ¢(p) < (1—0a?) ¢(p*), where a= (WJF 2)

Reference:
W, Gittens, & Mahoney: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging. In ICML 2017.



Proof Techniques

1. Use Claim2 that ¢(p*) < 6(®) < (1-0a®)-¢(p*), where a= (5= +?)

2. Follow the standard convergence analysis of Newton’s method.

=) Convergence of GIANT!
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* GIANT's theory beats the existing works.

* Assume the objective function is strongly convex and Lipschitz smooth.

* GIANT has good empirical performance on computer cluster.

e Beats AGD, L-BFGS, and DANE.
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* Assume the objective function is strongly convex and Lipschitz smooth.

Counter-examples
LASSO Neural Networks

Extensions of GIANT (our future work):

Proximal method Trust-region method




Thank You!



