GIANT: Globally Improved Approximate Newton
Method for Distributed Optimization

Shusen Wang
UC Berkeley

Joint work with Fred Roosta, Peng Xu, and Michael Mahoney

Background & Motivation

Optimization

* We consider the empirical risk minimization problem:

min {f(W) = %Zﬂ;l(w; Xj»yj)+7“(w)}

weEeRd

e Examples:

Linear Regression Linear Classification Neural Networks

Optimization

* How to solve the optimization problem min f(w) ?
\"\'4

1. Write some code / find a package.

8 I.\

‘ MATLAB
Tensor

. machine learning in Python R

@ python’

Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.

e —

Disk Random-access memory

Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.
3. Run the code.

Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.
3. Run the code.

* What if the data do not fit in memory?

Optimization

* How to solve the optimization problem min f(w) ?
\"\"

1. Write some code / find a package.
2. Load data to memory.
3. Run the code.

 What if the data do not fit in memory?
* What if the computation is too expensive for a single machine?

SmartDataCollective.com!
ity

1011

Imizat

Distributed Opt

Computer clusters

Distributed Optimization

AAZON £CZ

amazon

webservices

Supercomputer

Distributed Optimization

e

I

[Processor] coe

[Processor

)

I

Memory

.

~

e

[Processor] eoe

[Processor]

I

I

Memory

L

e

[Processor] oo [Processor

)

I

Memory

)

\g/

Processor o

Processor

Memory

L

i

Distributed Optimization

T
o I Ty T TITTITT] [(TTTTTITT] LTI TITITITT] Labels
e e e e
Machine 1 Machine 2 Machine m-1 Machine m

e (X1,v1),, (X, y,) are split among m machines.

Distributed Optimization

Ideally,

. % of the data fit in the memory of one machine;

* each machine does % of the computation == mx Speedup .

Distributed Optimization

Ideally,

. i of the data fit in the memory of one machine;

. 1 .
* each machine does — of the computation ==y mx up .

Do not overlook the communication!

Distributed Optimization: Example

Solve the problem:

min {f(W) = %il(“’; Xjay:/)““(w)}

weERd

Accelerated Gradient Descent (AGD) repeats:

1. Compute gradient: g = Vf(wga);
2. Update momentum: = +g, 05p6<1;

3. Update model: Whew = Wold — &

Warm-up: Distributed AGD

Wold

/...\

|

[1TT]
81

Machine 1

|

1T
g2

Machine 2

Sum\ o 0o 0

Znew = PZoig + Y

Whew = Wold — AZpoyy ———~— |

g

l

|

[TT]
8m-1

Machine m-1

1

[TT]
&m

Machine m

4—/—
/

Full gradient of f () at wg4.

Momentum

Update

Wold

/ coe

~ Broadcast

|

[1TT]
81

Machine 1

Machine 2

|

1T
g2

Sum\ o 0o 0

g

l

Whew = Wold — &

|

[TT]
8m-1

Machine m-1

1

[TT]
&m

Machine m

/ Reduce

Znew = PZoig + Y

Znew

Warm-up: Distributed AGD

* Time complexity:
nd
0 (?) FLOPs per

iteration.

* One Broadcast
and one Reduce
per iteration.

e Lots of iterations to
converge =» lots of
communications.

Warm-up: Distributed AGD

Cost = Computation + Communication

AGD for ¢,-Regularized Logistic Regression

109
10-2:
. —4
fwy) — f(w?") 10 |
I 10—6_3

— dmal | 10 g ‘800 rounds ofcommunications‘
Iteration optima - 0O

solution
10710 . . - .
0 100 200 300 400

iterations ¢

FLOPs versus Communications

fast network slow network

In favor of
e SGD e Mini-Batch SGD e Full GD
e SCD e Block SCD e L-BFGS

Single Machine Cluster Federated Learning

FL.OPs versus Communications

Federated Learning

FL.OPs versus Communications

A.\@

® Jfelelf
/| \

ke —

B.

Be___

The image is From Google Research Blog

C.

|

Federated Learning

FL.OPs versus Communications

7N
BN ‘
- A\~]

=a (@

The image is From Google Research Blog

Federated Learning

FLOPs versus Communications

slow network

In favor of
* Mini-Batch SGD * FullGD P P
¢ Block SCD e L-BFGS ' '

Single Machine Cluster Federated Learning

Distributed Optimization

Summary

1. For big-data problems, distributed optimization is very useful.

2. If the network is slow, then communication is the bottleneck.

* Recall: Cost = Computation + Communication

Communication-Efficient Optimization

Motivation

Basic ideas:
1. Let worker machines do lots of local computations.
2. Communicate as few as possible.

Prior Work

Existing communication-efficient methods:

* CoCoA

* DANE They make assumptions, e.g.,

e AIDE * objective function is strongly convex and Lipschitz smooth
o
o
o

Reference:
1. Smith, Forte, Ma, Takac, Jordan, & Jaggi. CoCoA: A General Framework for Communication-Efficient Distributed Optimization.

2. Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.
3. Reddi, Konecny, Richtarik, Poczds, & Smola. AIDE: Fast and Communication Efficient Distributed Optimization.

Prior Work

Existing communication-efficient methods:

* CoCoA Recall Accelerated Gradient Descent (AGD)

* DANE e 0 (\/Elog%) iterations

* AIDE * 2 communications per iteration Baseline!
o c 0 (%) FLOPs per iterations

Prior Work

Existing communication-efficient methods:

* CoCoA Recall Accelerated Gradient Descent (AGD)

* DANE e 0 (\/Elog%) iterations

* AIDE * 2 communications per iteration Baseline!
o c 0 (%) FLOPs per iterations

Do their convergence bounds beat AGD?

Prior Work

Existing communication-efficient methods:

* CoCoA Recall Accelerated Gradient Descent (AGD)

* DANE e 0 (\/Elog%) iterations

* AIDE * 2 communications per iteration Baseline!
o e 0 (%) FLOPs per iterations

Do their convergence bounds beat AGD?
* |n terms of communication, NO!
* |nterms of computation, NO!

Prior Work

Existing communication-efficient methods:

* CoCoA
e DANE
e AIDE

If the objective function is quadratic, then DANE = GIANT!

GIANT: Overview

Globally Improved Approximate Newton (GIANT)

 GIANT is a distributed 2M9-order method.

e Each iteration has 4 rounds of communications.
e Broadcast or Reduce of one vector.

* Much faster convergence than AGD in terms of communication.
* Assume the objective function is strongly convex and Lipschitz smooth.

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Examples
Linear regression Logistic regression
1 1 & T,
o = Sl = g S e) o)
)= =

23 -1 0 1 2 3 a 5 6

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks

1
2n

J

(whx; — ;)" + 7] wl
1

flw) =

n

kx|
20F

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks

The regularization is non-smooth! The objective is non-convex!

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

* Counter-examples

LASSO Neural Networks

The regularization is non-smooth! The objective is non-convex!

Extensions of GIANT (our future work):

Proximal methods Trust-region method

Globally Improved Approximate Newton (GIANT)

* Assume the objective function is strongly convex and Lipschitz smooth.

GIANT: Algorithm Description

Warm-up: Newton-CG

* Repeat until convergence
1. Compute gradient g and Hessian H;
2. Solve Hp = g by running tens/hundreds of CG steps;
3. Update w <« w — ap (find a by line search).

GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

In parallel, form the approximations:

H, ~ H H, ~H H, ,~H H,~H

In parallel, compute

~_1 ~

p, = Hi'g p, = H;'g b ,=H1l,8 p,=H

p = %Zi P; approximatesp = H™!g

GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

~ 1 ~ 1 ~ _ . _
P = gzl’pi = (EZiHi 1)8 approximates p = H 1g

GIANT: Algorithm Derivation

Recall: Newton’s directionisp = H 'g .

~ 1 . 1 C. . —
P=—2;D; = (;ZiHi 1)g approximates p = H™'g

* GIANT uses the exact gradient g.
-1
* GIANT approximates the Hessian matrix H by (D H-_l) :

1
m

local gradients ——_|

X,

LLITTITTIT Iy,

l

[r— [TT] gt,l

Wi

~

v

~

X

oo IIIIIIIIIII|y

l

O g

X
||||||l||||||ym
T 8¢ m

Wi

~ ~

v
X, X X,
||||||||||||y1 ¢ oo ||||||||||||y ¢ ||||||||||||ym
local gradients ——_| u%: . m%: . m%: .
’ ’ ,m

~ |

full gradient » g =) 8
1=1

Wi

/ } \
X, X X,
||||||||||||y1 oo ||||||||||||y 00 IIIIIIIIIIIIym
local gradients ——_| u%: . :é: . m%: .
)) ,m
v
full gradient > g = Z gt
=1
/ } \
X, X X,
||||||l||||||y1 L ||||||l||||||y 00 IIIIIIlllllllym
OO Prg I py, OO0 Pem

Approximate Newton
(ANT) directions

X, X X,

||||||l||||||y1 oo Tyi coe IIIIIIlIIIIIIym
O 8¢1 O 8¢ T 8¢ m
v
gtzzgt,i
=1

X, X X,

IIIIIIlIIIII|y1 ¢oe Tyl ¢ oo IIIIIIlIIIIIIym
OO Pry I Py OO Pem P 0¢~ Ay
i*‘_ -t ~ 11 N ~
- _ 1 \"g, . Approximate Newton
D Dt.i pproximatc INCW10
Globally Improved ANT ____~— m (ANT) directions

(GIANT) direction

most computations X, EEEEEREEREED'd X,
are done here _\ ||||||l||||||y1 oo Tyi oo ||||||l||||||ym
(in parallel) =0 B, 4 = B, =0 B,

Approximate Newton
(ANT) directions

most computations

are done here

(in parallel)

l

OO Prg

X,
\ 41

X
O III11y

X
[T IIITy,,
OO Pem

most computations

are done here \

(in parallel)

most computations X

are done here \ IIIIIIIIT1y

(in parallel) D%: i

Naive approach:

1. Form local Hessian H; € R%*4

2. Invert ﬁi
3. The ANT direction ﬁt’i = ﬁ{l g;:

It is inefficient!

1. Multiply two matrices to form H;

2. Invert the dense matrix ﬁi

most computations REEREEREERE)'Y
are done here SESEERENERE]S

(in parallel) L B,

Fact: For the problem

n

S iw x;5) +7HWH3} ,

j=1

1
n

min, { f(w) £

weERd

the local Hessian can be written as H; = ALTAL- + yl,.

Machine 1 Machine 1 Machine m

most computations X

are done here \ IIIIIIIIT1y

(in parallel) Eéj B.

Fact: For the problem

n

A 1
min {f(w) = EZZ(W; Xj;in)""YH“’H%})

d
wEeR =1

the local Hessian can be written as H; = AlTAl- + yl,.

Local solver:

* |nexactly solve (ALTAL- + yld)p = g, by taking g CG steps.

* Cost: 2g matrix-vector products.

most computations

are done here

(in parallel)

l

OO Peq

X,
\ 41

X

o LITTITITITITTyY

l

O P

~

1

~

1 m
p: = %Z;f)t,i
1=

X
(I IIIIray,,
OO Prom

v
X, X X,
IIIIIllIIIIIIy1 ¢ 0o IIIIIIlIIIIIIy ¢ 0o IIIIIIlIIIIIIy
[T 8¢1 0 g T 8¢m
b,
gtzzgt,i
1=1 \
/ /
most computations X, X X,
aredonehere \ IIIIIllIIIII|y1 ¢ oo IIIIIIlIIIIIIy ¢ oo IIIIIIlIIIIIIym
(in parallel) oo Py mm f, 0 P
_ 1 .
Pt = — Pt,i
1=1

dat |
Hpaaie W -\» Wit = Wiy — Dy

GIANT: Experiments

Settings
* Solve the £,-regularized logistic regression:

1 « T
min {f(w) = 5Zlog(1—|—e v)—|—%HWH%}

d
weR =1

Datasets

* Covtype: n = 581K, d = 54.
e Epsilon: n = 500K, d = 2K.
* 80% for training, 20% for test.

Datasets

* Covtype: n = 581K, d = 54.
e Epsilon: n = 500K, d = 2K.
* 80% for training, 20% for test.

Input Features

T T o d
1 Random Features l

+

Machine 1 Machine 2 Machine m-1 Machine m

Compared Methods

* Accelerated gradient descent (AGD)
* choose step size from {0.1, 1, 10, 100}
e choose momentum from {0.5, 0.9, 0.95, 0.99, 0.999}

Compared Methods

* Accelerated gradient descent (AGD)

* Limited memory BFGS (a quasi-Newton method)
* choose number of history from {30, 100, 300}
* line search is used

Compared Methods

* Accelerated gradient descent (AGD)
* Limited memory BFGS

* DANE (another Newton-type method) [Shamir et al. 2014]
* local solver: SVRG (a stochastic optimization method)
* choose step size of SVRG from {0.1, 1, 10, 100}
* choose max. iteration of SVRG from {30, 100, 300}

Reference:
Shamir, Srebro, & Zhang. Communication Efficient Distributed Optimization using an Approximate Newton-type Method. In ICML, 2014.

Compared Methods

* Accelerated gradient descent (AGD)

* Limited memory BFGS

 DANE (another Newton-type method)
* GIANT

* local solver: conjugate gradient (CG)
e choose max iteration of CG from {30, 100, 300}

Compared Methods

Tuning Parameters

* Accelerated gradient descent (AGD)

* Limited memory BFGS

Tuning Parameter

 DANE (another Newton-type method)

Tuning Parameters

= IS R S

* GIANT

Tuning Parameter

Experiment Environment

* Spark 2.1.1 + Scala 2.11.8

Spqﬁg FScala

Experiment Environment

* Spark 2.1.1 + Scala 2.11.8
* Cori Supercomputer (Cray XC40)

National Energy Research
Scientific Computing Center

) BERKELEY LAB

Bringing Science Solutions to the World

Experiment Environment

* Spark 2.1.1 + Scala 2.11.8

* Cori Supercomputer (Cray XC40)
e 128 GB Memory / node
e 32 Cores / node

e Use 15 nodes (480 CPU cores)

fwy) — f(w™)

Covtype (n=581K, d=10K), Training

time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS

fwy) — f(w™)

Epsilon (n=500K, d=10K), Training

y =107°
w w w 10°
- %@‘ '''''''''''' 1 10-17
_ R LTI -2
BN N . 10°?|
hY ~ 1073]
1
A | 107
Y 5
x% : 10_6
1 2 3 4 0% 1 2 73 1
time (10? seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS

Test Error (%)

Covtype (n=581K, d=10K), Test

y =107 y =108

0.30 0.30.
0.28f 0.28;:

: 0.26|
0.261:

; 0.24|
0.24{ 0.22!
0.22} 0.20}
02051 5 3 4 5 6 01 2 3 a4 5%

time (102 seconds) time (10? seconds)

AGD —¢= DANE —+— GIANT

-~- L-BFGS

Test Error (%)

Epsilon (n=500K, d=10K), Test

y = 107
0.24 :
0.221:
0.20]f:
0.18(;
0.16/%
0.14|%
0.12} Q‘g M, L TN o]
0 1 2 3 4
time (102 seconds)
AGD —¢— DANE

y = 1078

0.24,
0.22:
0.20|[;
0.18]]:
0.16/|*
0.14] *
0.12}

—+— GIANT

1 2 3
time (10? seconds)

L-BFGS

Scaling Experiments

* Make the Covtype data k times larger.

1. Get k replicates of X and y;
2. Injecti.i.d. Gaussian noises to the knXd feature matrix;
3. Do random feature mapping to get 10K features.

e Use k times more nodes.

e Set k =5and k = 25.

fwy) — f(w™)

Original Data, 15 Nodes (480 Cores)

X

10— "3 3 4 5 ¢ 0 1 2 3 4 5
time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS

6

fwy) — f(w™)

5>x Larger Data, 75 Nodes (2.4K Cores)

y =106 y = 1078

2 3 4 5 6 0 1 2 3 4 5 6
time (10% seconds) time (102 seconds)

AGD —¢—= DANE =—+— GIANT === L-BFGS

25x Larger Data, 375 Nodes (12K Cores)

fwy) — f(w™)

time (10% seconds)

AGD —¢= DANE

10°

107\
107}

1073}

1074

0 1 2 3 4 5 6

time (102 seconds)

—+— G|ANT === L-BFGS

Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the same;
* the communication costs increase.

Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the;
* the communication costs increase.

e Per-iteration time of AGD and L-BFGS increases.

1.8 \ \ \ 4.5 | | |
1.67 AGD 0 | L'BFGS S
1.4| — 9 =

o e *

" I 1 q) |

£ 0.8 | g 30

i~ 0.6/ | 2.5
0.4/ f 5 0
0.2! — e | Ot - ——
0.0—7=3 75 375 1.5 15 75 375

Number of Nodes Number of Nodes

Why 1s GIANT More Scalable?

* As #Samples and #Nodes both increases by k times,
* the computational costs remain the;
* the communication costs increase.

e Per-iteration time of AGD and L-BFGS increases.

* Per-iteration time of GIANT marginally increases.
* Because GIANT is computation-intensive.

FLLOPs versus Communication

fast network slow network

In favor of
e SGD * Mini-Batch SGD e AGD GIANT
« SCD * Block SCD e L-BFGS DANE
Single Machine Cluster ! Federated Learning

/

Spark on Supercomputer

GIANT: Convergence Analysis

Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3

Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3
 Assume X is “incoherent” (information uniformly spread)

* Assume local sample size is s = ©(% log %) for any -, € (0,1)

S S S S

| | | |
[|| | [|| |

YT—— [(TITTTTITT] I IITTTd

AT T A

Machine 1 Machine 2 Machine m-1 Machine m

Quadratic Loss: Global Convergence

* Objective function: f(w) = | Xw —y]|;+2|w|3
 Assume X is “incoherent” (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

* With probability 1 — 6 (assume random partition of the data),

*

2\? A _
AL < (ﬁ + *)'VEK, where Ay = wy—w".
S S S S

| | | |
l || | [|| |

y—— [(TITTTTITT] I IITTTd

AT T A

Machine 1 Machine 2 Machine m-1 Machine m

Quadratic Loss: Global Convergence

GIANT has log k dependence.

AGD has +/k dependence.

General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)

* Assume local sample size is s = ©(% log %) for any -, € (0,1)

S S S S

| | | |
[|| | [|| |

YT—— [(TITTTTITT] I IITTTd

AT T A

Machine 1 Machine 2 Machine m-1 Machine m

General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

* Assume the Hessian is L-Lipchitz: [|[V2f(w)— V2f(w')||, < L|w — w'[|2

I

S S S S

| | | |
[|| | [|| |

YT—— [(TITTTTITT] I IITTTd

AT T A

Machine 1 Machine 2 Machine m-1 Machine m

General Smooth Loss: Local Convergence

* Denote H, = V?f(w;) and H* = V?f(w"*)
e Similar “incoherent” assumption (information uniformly spread)
* Assume local sample size is s = ©(% log %) for any -, € (0,1)

 Assume the Hessian is L-Lipchitz: [|[V2f(w) — V2f(w')|, < L|w — w'|2

I

* With probability 1 — 6 (assume random partition of the data),

[acall, < maxf () yEET A, A]

Linear Quadratic

Inexactly Solving Local Linear System

* Exactly solving Iflt,l-p = g, may not be easy.
\/__

* Solve H; ;p = g, by taking ¢ = log 5 CG steps.

e Recall the bounds of exact solver:

Quadratic Loss: 1A« (o= +)V, where A; 2w, —w"

General Loss: A1), < max{(— + %) \/iza;‘((gf;\m

o il A}

Inexactly Solving Local Linear System

* Exactly solving I'-Vlt,l-p = g, may not be easy.
\/__

* Solve H; ;p = g, by taking ¢ = log 5 CG steps.

e Recall the bounds of exact solver:

Quadratic Loss: ”ﬁ—éuz < ‘ (ﬁ + 2)r \/E’ where Ay £ Wi — w*.
GeneralLoss: ([, < mox{(-+ OB Al s)

 Bounds of the inexact solver:

2 2
W‘F — ﬁ—l_ + €

Inexactly Solving Local Linear System

* Exactly solving I’-Vlt’l-p = g, may not be easy.

* Solve H, ;p = g, by taking |« = ¥~ log 5 | CG steps.
e Recall the bounds of exact solver:
Quadratic Loss: ”ﬁ_éuz < ‘ (ﬁ + 2)|’ VK, where A; 2w, —w”.
. 2 Omax H
General toss: |Avnf, < max{l(+)/ EG AL i lad?]

 Bounds of the inexact solver:

2

2
W‘F — ﬁ—l_ +l€o

Outline of Proof

Proof Techniques

Claim 1: Local Hessian Fll, oo ﬁm well approximate the true Hessian H.

Proof Techniques

Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™**¢,

Machine 1

Machine 1i

AT

l

Machine m

Proof Techniques

Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,
* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

Machine 1 Machine 1 Machine m
T T T
AT Al AT

l

XT

AT

Proof Techniques

Claim 1: Local Hessian Hy, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,
* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

“| S

Proof Techniques

Claim 1: Local Hessian Fll, oo ﬁm well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,

* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

» Sufficiently large samples size s = (% log 4)

* By matrix Bernstein (concentration inequality), with probability 1 — 9,

n
(1—-)ATA < EALTAL- < (1+)ATA.

Proof Techniques

Claim 1: Local Hessian H;, ---, H,,, well approximate the true Hessian H.

* H can always be written as H = ATA + y1,, for some A € R™*¢,

* Assume A is “incoherent”.

* Uniformly partition A to form A; € R5*¢,

» Sufficiently large samples size s = (% log 4)

* By matrix Bernstein (concentration inequality), with probability 1 — 9,

n
(1—-)ATA < EALTAL- < (1+)ATA.

* Note that H; = %ALTAL- +yl, === H; well approximates H.

Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

AL

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

Newton direction p*

GIANT direction p

Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

AL

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

 The exact Newton directionis p* = H !'g = argmin ¢(p)
P

Proof Techniques

Claim 2: The GIANT direction approximates p* = H™1g.

* Define the quadratic function ¢(p) £ ip’Hp—p’g (<0)

* The exact Newton directionis p* = H'g = argmin »(p)

* The GIANT directionsis b = sz £ %i

* Conditioning on Claim 1 that H weII app_rOX|mates H, we get

o(p*) < ¢(p) < (1—0a?) ¢(p*), where a= (WJF 2)

Reference:
W, Gittens, & Mahoney: Sketched Ridge Regression: Optimization Perspective, Statistical Perspective, and Model Averaging. In ICML 2017.

Proof Techniques

1. Use Claim2 that ¢(p*) < 6(®) < (1-0a®)-¢(p*), where a= (5= +?)

2. Follow the standard convergence analysis of Newton’s method.

=) Convergence of GIANT!

Conclusions & Future Work

Conclusions & Future Work

* GIANT's theory beats the existing works.

* Assume the objective function is strongly convex and Lipschitz smooth.

* GIANT has good empirical performance on computer cluster.

e Beats AGD, L-BFGS, and DANE.

Conclusions & Future Work

* Assume the objective function is strongly convex and Lipschitz smooth.

Conclusions & Future Work

* Assume the objective function is strongly convex and Lipschitz smooth.

Neural Networks

Counter-examples

LASSO

Conclusions & Future Work

* Assume the objective function is strongly convex and Lipschitz smooth.

Counter-examples
LASSO Neural Networks

Extensions of GIANT (our future work):

Proximal method Trust-region method

Thank You!

