
GIANT: Experiments



Settings

• Solve	the	ℓG-regularized	logistic	regression:

min
w2Rd

⇢
f(w) , 1

n

nX

j=1

log
�
1 + e�yjxT

j w�+ �

2
kwk22

�

4



Datasets
• Covtype: d = 581K, h = 54.

• Epsilon: d = 500K, h = 2K.

• 80% for training, 20% for test.



Datasets
• Covtype: d = 581K, h = 54.

• Epsilon: d = 500K, h = 2K.

• 80% for training, 20% for test.

Machine m-1 Machine m

Input Features

Random Features

Machine 1 Machine 2

⋯"#

⋯"$#

h

h̅ = 10k



Compared Methods

• Accelerated	gradient	descent	(AGD)
• choose	step	size	from	{0.1,	1,	10,	100}

• choose	momentum from	{0.5,	0.9,	0.95,	0.99,	0.999}



Compared Methods

• Accelerated	gradient	descent	(AGD)
• Limited	memory	BFGS	(a	quasi-Newton	method)

• choose	number	of	history	from	{30,	100,	300}

• line	search	is	used



Compared Methods

• Accelerated	gradient	descent	(AGD)
• Limited	memory	BFGS

• DANE	(another	Newton-type	method)	[Shamir et	al.	2014]

• local	solver:	SVRG (a stochastic optimization method)

• choose	step	size	of	SVRG	from	{0.1,	1,	10,	100}

• choose	max. iteration	of	SVRG	from	{30,	100,	300}

Reference:
Shamir,	Srebro,	&	Zhang.	Communication	Efficient	Distributed	Optimization	using	an	Approximate	Newton-type	Method.	In ICML,	2014.



Compared Methods

• Accelerated	gradient	descent	(AGD)
• Limited	memory	BFGS

• DANE	(another	Newton-type	method)

• GIANT
• local	solver:	conjugate	gradient	(CG)
• choose	max	iteration	of	CG	from	{30,	100,	300}



Compared Methods

• Accelerated	gradient	descent	(AGD)
• Limited	memory	BFGS

• DANE	(another	Newton-type	method)

• GIANT

2 Tuning Parameters

1 Tuning Parameter

2 Tuning Parameters

1 Tuning Parameter



Experiment Environment

• Spark 2.1.1 + Scala 2.11.8



Experiment Environment

• Spark 2.1.1 + Scala 2.11.8
• Cori Supercomputer (Cray XC40)



Experiment Environment

• Spark 2.1.1 + Scala 2.11.8
• Cori Supercomputer (Cray XC40)
• 128 GB Memory / node

• 32 Cores / node
• Use 15 nodes (480 CPU cores)



Covtype (n=581K, dm=10K), Training

` = 10Vn ` = 10Vo

%
$
I
−
%
($

⋆
)

Figure 1: legend

h

2



Epsilon (n=500K, dm=10K), Training
%
$
I
−
%
($

⋆
)

Figure 1: legend

h

2

` = 10Vn ` = 10Vo



Covtype (n=581K, dm=10K), Test

` = 10Vn ` = 10Vo

T
e
s
t
E
rr
o
r
(%

)

Figure 1: legend

h

2



Epsilon (n=500K, dm=10K), Test

Figure 1: legend

h

2

` = 10Vn ` = 10Vo

T
e
s
t
E
rr
o
r
(%

)



Scaling Experiments

• Make the Covtype data p times larger.

1. Get p replicates of q and r;
2. Inject i.i.d. Gaussian noises to the pd×h feature matrix;

3. Do random feature mapping to get 10K features.

• Use p times more nodes.

• Set	p = 5 and	p = 25.



Original Data, 15 Nodes (480 Cores)

` = 10Vn ` = 10Vo

%
$
I
−
%
($

⋆
)

Figure 1: legend

h

2



5x Larger Data, 75 Nodes (2.4K Cores)

` = 10Vn ` = 10Vo

%
$
I
−
%
($

⋆
)

Figure 1: legend

h

2



25x Larger Data, 375 Nodes (12K Cores)

` = 10Vn ` = 10Vo

%
$
I
−
%
($

⋆
)

Figure 1: legend

h

2



Why is GIANT More Scalable?

• As	#Samples	and	#Nodes	both	increases	by	p times,

• the	computational costs	remain	the	same;
• the	communication costs	increase.



Why is GIANT More Scalable?

• As	#Samples	and	#Nodes	both	increases	by	p times,

• the	computational	costs	remain	the;

• the	communication	costs	increase.

• Per-iteration	time	of	AGD	and	L-BFGS	increases.

AGD L-BFGS



Why is GIANT More Scalable?

• As	#Samples	and	#Nodes	both	increases	by	p times,

• the	computational	costs	remain	the;

• the	communication	costs	increase.

• Per-iteration	time	of	AGD	and	L-BFGS	increases.

• Per-iteration	time	of	GIANT	marginally	increases.

• Because	GIANT	is	computation-intensive.


