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• Given	any	matrix	𝐀 ∈ ℝ$×&

• The	CX	decomposition	of	𝐀
1. Sketching:	𝐂 = 𝐀𝐏 ∈ ℝ$×*
2. Find	𝐗 such	that	𝐀 ≈ 𝐂𝐗

• E.g.	𝐗⋆ = argmin𝐗 𝐀 − 𝐂𝐗 5
6 = 𝐂7𝐀

• It	costs	𝑂 𝑚𝑛𝑐

• CX	decomposition	⇔	approximate	SVD
𝐀		 ≈ 		𝐂𝐗		 = 		𝐔G𝚺G𝐕GJ𝐗		 = 		𝐔G𝐙		 = 		𝐔G𝐔L𝚺L𝐕LJ

CX Decomposition



• Let the sketching matrix 𝐏 ∈ ℝ&×* be defined in the table.

• min
WXYZ 𝐗 [\

𝐀 − 𝐂𝐗 ]
6 		≤ 		 1 + 𝜖 		 𝐀 − 𝐀\ ]

6

Uniform	sampling Leverage	score	
sampling

Gaussian	
projection

SRHT Count	sketch

c ≥ O 𝜈𝑘 log 𝑘 +
1
𝜖 O 𝑘 log 𝑘 +

1
𝜖

O
𝑘
𝜖 O 𝑘 + log 𝑛 log 𝑘 +

1
𝜖

O 𝑘6 +
𝑘
𝜖

𝜈 is	the	column	coherence	of	𝐀Z

CX Decomposition



CX Decomposition ⇔ Approximate SVD

• CX	decomposition	⇔	approximate	SVD
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• CX	decomposition	⇔	approximate	SVD
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𝑚×𝑠 matrix	with	
orthonormal	columns

diagonal	matrix

𝑠×𝑛 matrix	with	
orthonormal	rows
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CX Decomposition ⇔ Approximate SVD

• CX	decomposition	⇔	approximate	SVD

• Done!		Approximate	rank	𝑐 SVD:	𝐀 ≈ (𝐔G𝐔L)𝚺L𝐕LJ

𝐀		 ≈ 		𝐂𝐗		 = 		𝐔G𝚺G𝐕GJ𝐗		 = 		𝐔G𝐙		 = 		𝐔G𝐔L𝚺L𝐕LJ

𝑚×𝑠 matrix	with	
orthonormal	columns

diagonal	matrix

𝑠×𝑛 matrix	with	
orthonormal	rows

Time	cost:		𝑂 𝑚𝑐6 + 𝑛𝑐6 + 𝑛𝑐6 + 𝑚𝑐6 = 𝑂(𝑚𝑐6 + 𝑛𝑐6)



CX Decomposition ⇔ Approximate SVD

• CX	decomposition	⇔	approximate	SVD

• Given	𝐀 ∈ ℝ$×& and	𝐂 ∈ ℝ$×*,	the	approximate	SVD	costs
• 𝑂 𝑚𝑛𝑐 time
• 𝑂 𝑚𝑐 + 𝑛𝑐 memory



CX Decomposition

• The	CX	decomposition	of	𝐀 ∈ ℝ$×&

• Optimal	solution:	𝐗⋆ = argmin𝐗 𝐀 − 𝐂𝐗 5
6 = 𝐂7𝐀

• How	to	make	it	more	efficient?



CX Decomposition

• The	CX	decomposition	of	𝐀 ∈ ℝ$×&

• Optimal	solution:	𝐗⋆ = argmin𝐗 𝐀 − 𝐂𝐗 5
6 = 𝐂7𝐀

• How	to	make	it	more	efficient?
A	regression	problem!



Fast CX Decomposition

• Fast	CX [Drineas, Mahoney, Muthukrishnan, 2008][Clarkson & Woodruff, 2013]

• Draw	another	sketching	matrix	𝐒 ∈ ℝ$×m

• Compute	𝐗n = argmin𝐗 𝐒o 𝐀 − 𝐂𝐗 5
6 = 𝐒J𝐂 7 𝐒J𝐀

• Time	cost:	𝑂 𝑛𝑐𝑠 + TimeOfSketch
• When	𝑠 = 𝑂q 𝑐/𝜖 ,	

𝐀 − 𝐂𝐗n
5

6
≤ 1 + 𝜖 ⋅ min𝐗 𝐀 − 𝐂𝐗 5

6
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CUR Decomposition

• Sketching
• 𝐂 = 𝐀𝐏𝐂 ∈ ℝ$×*

• 𝐑 = 𝐏𝐑J𝐀 ∈ ℝv×&

• Find 𝐔 such that 𝐂𝐔𝐑 ≈ 𝐀
• CUR	⇔ Approximate	SVD
• In	the	same	way	as	“CX⇔ Approximate	SVD”



CUR Decomposition

• Sketching
• 𝐂 = 𝐀𝐏𝐂 ∈ ℝ$×*

• 𝐑 = 𝐏𝐑J𝐀 ∈ ℝv×&

• Find 𝐔 such that 𝐂𝐔𝐑 ≈ 𝐀
• CUR	⇔ Approximate	SVD
• In	the	same	way	as	“CX⇔ Approximate	SVD”

• 3 types of 𝐔



CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
𝐔 = 𝐏𝐑o𝐀𝐏𝐂

7

𝐂𝐀 𝐔 𝐑



CUR Decomposition
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• Recall the fast CX decomposition
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7 𝐏𝐑o𝐀 	= 	𝐂𝐔𝐑
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CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
𝐔 = 𝐏𝐑o𝐀𝐏𝐂

7

• Recall the fast CX decomposition
𝐀	 ≈ 	𝐂𝐗n 	= 	𝐂 𝐏𝐑o𝐂

7 𝐏𝐑o𝐀 	= 	𝐂𝐔𝐑

• They’re equivalent: 𝐂	𝐗n = 𝐂	𝐔	𝐑

• Require 𝑐 = 𝑂q \
w

and 𝑟 = 𝑂q *
w

such that
𝐀 − 𝐂𝐔𝐑 5

6 	≤ 	 1 + 𝜖 	 𝐀 − 𝐀\ 5
6



CUR Decomposition

• Type 1 [Drineas, Mahoney, Muthukrishnan, 2008]:
𝐔 = 𝐏𝐑𝐓𝐀𝐏𝐂

7

• Efficient
• O 𝑟𝑐6 + TimeOfSketch

• Loose bound
• Sketch size ∝ 𝜖{6

• Bad empirical performance



CUR Decomposition

• Type 2:	Optimal	CUR
𝐔⋆ = min

𝐔
𝐀 − 𝐂𝐔𝐑 ]

6 = 𝐂7𝐀𝐑7



CUR Decomposition

• Type 2:	Optimal	CUR
𝐔⋆ = min

𝐔
𝐀 − 𝐂𝐔𝐑 ]

6 = 𝐂7𝐀𝐑7

• Theory [W	&	Zhang,	2013], [Boutsidis & Woodruff, 2014]:
• 𝐂 and 𝐑 are selected by the adaptive sampling algorithm
• 𝑐 = 𝑂 \

w and 𝑟 = 𝑂 \
w

• 𝐀 − 𝐂𝐔𝐑 ]
6 ≤ 1 + 𝜖 	 𝐀 − 𝐀\ 5

6



CUR Decomposition

• Type 2:	Optimal	CUR
𝐔⋆ = min

𝐔
𝐀 − 𝐂𝐔𝐑 ]

6 = 𝐂7𝐀𝐑7

• Inefficient
• O 𝑚𝑛𝑐 + TimeOfSketch



CUR Decomposition

• Type 3:	Fast	CUR	[W, Zhang, Zhang, 2015]

• Draw 2 sketching matrices 𝐒𝐂 and 𝐒𝐑
• Solve the problem

𝐔n = min
𝐔

𝑺𝑪o 𝐀 − 𝐂𝐔𝐑 𝐒𝐑 ]

6
= 𝐒𝐂J𝐂

7 𝐒𝐂o𝐀𝐒𝑹 𝐑𝐒𝐑 7

• Intuition?



CUR Decomposition

• The optimal	𝐔matrix	is obtained by the optimization problem
𝐔⋆ = min

𝐔
𝐂𝐔𝐑 − 𝐀 ]

6



CUR Decomposition

• Approximately solve the optimization problem, e.g. by column
selection



CUR Decomposition

• Solve the small scale problem



CUR Decomposition

• Type 3:	Fast	CUR	[W, Zhang, Zhang, 2015]

• Draw 2 sketching matrices 𝐒𝐂 ∈ ℝ$×m� and 𝐒𝐑 ∈ ℝ&×m�
• Solve the problem

𝐔n = min
𝐔

𝐒𝑪o 𝐀 − 𝐂𝐔𝐑 𝐒𝐑 ]

6
= 𝐒𝐂J𝐂

7 𝐒𝐂o𝐀𝐒𝑹 𝐑𝐒𝐑 7

• Theory
• 𝑠* = 𝑂 *

w and sv = 𝑂 v
w

• 𝐀 − 𝐂𝐔n𝐑
]

6
≤ 1 + 𝜖 ⋅ min

𝐔
𝐀 − 𝐂𝐔𝐑 ]

6



CUR Decomposition

• Type 3:	Fast	CUR	[W, Zhang, Zhang, 2015]

• Draw 2 sketching matrices 𝐒𝐂 ∈ ℝ$×m� and 𝐒𝐑 ∈ ℝ&×m�
• Solve the problem

𝐔n = min
𝐔

𝐒𝑪o 𝐀 − 𝐂𝐔𝐑 𝐒𝐑 ]

6
= 𝐒𝐂J𝐂

7 𝐒𝐂o𝐀𝐒𝑹 𝐑𝐒𝐑 7

• Efficient
• 𝑂 𝑠*𝑠v 𝑐 + 𝑟 + TimeOfSketch

• Good empirical performance



Type 2:	Optimal	CUROriginal

Type 1:	Fast	CX Type 3:	Fast	CUR
𝑠* = 2𝑐, 𝑠v = 2𝑟

Type 3:	Fast	CUR
𝑠* = 4𝑐, 𝑠v = 4𝑟

𝐀:
𝑚 = 1920
𝑛 = 1168

𝐂 and	𝐑:
• 𝑐 = 𝑟 = 100
• uniform	sampling



Conclusions

• Approximate	truncated	SVD
• CX	decomposition
• CUR	decomposition	(3	types)

• Fast	CUR	is	the	best
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Motivation 1: Kernel Matrix

• Given	𝑛 samples	𝐱�,⋯ , 𝐱& ∈ ℝ� and	kernel	function	𝜅 ⋅,⋅ .
• E.g.	Gaussian	RBF	kernel

𝜅 𝐱�, 𝐱� = exp −
𝐱� − 𝐱� 6

6

𝜎6 .

• Computing	the	kernel	matrix	𝐊 ∈ ℝ&×&
• where	𝑘�� = 𝜅 𝐱�, 𝐱�
• costs	O(𝑛6𝑑) time
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• where	𝑘�� = 𝜅 𝐱�, 𝐱�
• costs	𝑂(𝑛6𝑑) time



Motivation 2: Matrix Inversion

• Solve	the	linear	system
𝐊 + 𝛼𝐈& 𝐰 = 𝐲

to	find	𝐰 ∈ ℝ&.
• It	costs	O(𝑛�) time	and	O(𝑛6)memory.
• Performed	by	
• Gaussian	process	regression	(equivalently,	kernel	ridge	regression)
• Least	squares	kernel	SVM

• 𝐊 ∈ ℝ&×& is	the	kernel	matrix	
• 𝐲 = 𝑦�,⋯ , 𝑦& ∈ ℝ& contains	the	labels
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Motivation 3: Eigenvalue Decomposition

• Find	the	top	𝑘 (≪ 𝑛)	eigenvectors	of	𝐊.
• It	costs	
• 𝑂q(𝑛6𝑘) time
• 𝑂(𝑛6)memory.



Motivation 3: Eigenvalue Decomposition

• Find	the	top	𝑘 (≪ 𝑛)	eigenvectors	of	𝐊.
• It	costs	
• 𝑂q(𝑛6𝑘) time
• 𝑂(𝑛6)memory.

• Performed	by	
• Kernel	PCA	(𝑘 is	the	target	rank)
• Manifold	learning (𝑘 is	the	target	rank)



Computational Challenges

• Time	costs
• Computing	kernel	matrix:	𝑂(𝑛6𝑑)
• Matrix	inversion:	𝑂(𝑛�)
• Rank	𝑘 eigenvalue	decomposition:	𝑂(𝑛6𝑘)
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At	least	quadratic	time!
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Computational Challenges

• Time	costs
• Computing	kernel	matrix:	𝑂(𝑛6𝑑)
• Matrix	inversion:	𝑂(𝑛�)
• Rank	𝑘 eigenvalue	decomposition:	𝑂(𝑛6𝑘)

• Memory	costs
• Inversion	and	eigenvalue	decomposition:	𝑂(𝑛6)
• Because	

• the	numerical	algorithms	are	pass-inefficient
• è form	𝐊 and	keep	it	in	memory

When	𝑛 = 10�,	the	𝑛×𝑛 matrix	costs	80GB	memory!



How to Speedup?

• Efficiently	form	the	low-rank	approximation
𝐊 ≈ 𝐂	𝐔	𝐂J

𝐊 𝐂 𝐂J𝐔



How to Speedup?

• Efficiently	form	the	low-rank	approximation
𝐊 ≈ 𝐂	𝐔	𝐂J

• Equivalent	𝐊 ≈ 𝐋	𝐋J



Efficient Matrix Inversion

• Solve	the	linear	system	 𝐊 + 𝛼𝐈& 𝐰 = 𝐲:
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Efficient Matrix Inversion

• Approximately	solve	the	linear	system	 𝐊 + 𝛼𝐈& 𝐰 = 𝐲
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Efficient Matrix Inversion

• Approximately	solve	the	linear	system	 𝐊 + 𝛼𝐈& 𝐰 = 𝐲

• Replace	𝐊 by	𝐋𝐋J:				𝐰⋆ = 𝐊 + 𝛼𝐈& {�𝐲 ≈ 𝐋𝐋J + 𝛼𝐈&
{�𝐲

• Expand	the	inversion	by	the	Woodbury	identity
𝐰⋆ ≈ 𝛼{�𝐲 + 𝛼{�𝐋 𝛼𝐈 + 𝐋o𝐋 {�𝐋𝐓𝐲

• Time	cost:	𝑂 𝑛𝑐6

Linear	in	𝑛,	much	better	than	𝑂 𝑛�
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• Approximate	𝑘- eigenvalue	decomposition	of	𝐊
• eigenvectors:	the	first	𝑘 vectors	in	𝐔𝐋
• eigenvalues:	the	first	𝑘 vectors	diagonal	entries	in	𝚺𝐋
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• eigenvectors:	the	first	𝑘 vectors	in	𝐔𝐋

• Time	cost:	𝑂 𝑛𝑐6
• Much	lower	than	𝑂q 𝑛6𝑘
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Sketching Based Models

• How	to	find	such	an	approximation?

• Sketching	based	Methods:	𝐂 = 𝐊𝐒 ∈ ℝ&×* is	a	sketch	of	𝐊.
• 𝐒 ∈ ℝ&×* can	be	column	selection	or	random	projection	matrix

• Three	methods:
• The	prototype	model	[HMT11,	WZ13,	WLZ16]

• The	fast	model	[WZZ15]

• The	Nyström method [WS15,	GM13]

𝐊 ≈ 𝐂	𝐔	𝐂J



The Prototype Model

• Objective:	𝐊 ≈ 𝐂𝐔𝐂J

• Minimize	the	approximation	error	by
𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

]

6
= 𝐂7𝐊 𝐂7 J.
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• Minimize	the	approximation	error	by
𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

]

6
= 𝐂7𝐊 𝐂7 J.

Extension of the random SVD to SPSD matrix [HMT11]



The Prototype Model

• Objective:	𝐊 ≈ 𝐂𝐔𝐂J

• Minimize	the	approximation	error	by
𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

]

6
= 𝐂7𝐊 𝐂7 J.

• Time:	𝑂(𝑛6𝑐)

• The	time	complexity	is	nearly	the	same	to	the	𝑘-eigenvalue	decomposition.
• It	is	much	faster	than	the	𝑘- eigenvalue	decomposition	in	practice.
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The Prototype Model

• Objective:	𝐊 ≈ 𝐂𝐔𝐂J

• Minimize	the	approximation	error	by
𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

]

6
= 𝐂7𝐊 𝐂7 J.

• Time:	𝑂(𝑛6𝑐)
• #Passes:	one
• Memory:	𝑂(𝑛𝑐)

• Put	𝑘�� in	memory	only	when	it	is	visited
• Keep	𝐂7 in	memory



The Prototype Model

• Error	Bound
• 𝑘 ≪ 𝑛 is	arbitrary	integer
• 𝐏 samples	𝑐 = 𝑂 \

w columns by adaptive sampling

• 𝔼 𝐊 − 𝐂𝐔⋆𝐂J
]

6
≤ 1 + 𝜖 𝐊 − 𝐊\ ]

6



The Prototype Model

• Limitations
• 𝐔⋆ = 𝐂7𝐊 𝐂7 J

• Time	cost	is	𝑂 𝑛6𝑐
• Requires	observing	the	whole	of	𝐊



The Prototype Model

• Prototype	model:	𝐊 ≈ 𝐂	𝐔⋆	𝐂J,	where
𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

5

6
.

𝐊 𝐂 𝐂J𝐔



The Fast Model

• Column/row	selection
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𝐏J𝐊𝐏 𝐏J𝐂 𝐂J𝐏𝐔



The Fast Model

• Column/row	selection
• Form		𝐏J𝐊𝐏 and	𝐏J𝐂

𝐏J𝐊𝐏 𝐏J𝐂 𝐂J𝐏𝐔



The Fast Model

• 𝐊 ≈ 𝐂	𝐔	n 𝐂J,	 where
𝐔n = argmin
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𝑭

𝟐
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The Fast Model
• Prototype	model: 𝐔⋆ = argmin

𝐔
𝐊 − 𝐂𝐔𝐂J

5

6
= 𝐂7𝐊 𝐂7 J

• Fast	model:	𝐔n = argmin
𝐔

𝐏J 𝐊 − 𝐂𝐔𝐂J 𝐏
]

𝟐
= 𝐏J𝐂 7(𝐏J𝐊𝐏) 𝐂J𝐏 7.
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• Fast	model:	𝐔n = argmin
𝐔

𝐏J 𝐊 − 𝐂𝐔𝐂J 𝐏
]

𝟐
= 𝐏J𝐂 7(𝐏J𝐊𝐏) 𝐂J𝐏 7.

• Theory
• 𝑝 = 𝑂 &*

w
�

• 𝐏 is column selection matrix (according to the row leverage scores of 𝐂)

• Then	 𝐊 − 𝐂𝐔n𝐂J
]

6
≤ 1 + 𝜖 𝐊 − 𝐂𝐔⋆𝐂J

]

6

The	faster	model	is	nearly	as	good	as	the	prototype	model!	



The Fast Model
• Prototype	model: 𝐔⋆ = argmin

𝐔
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5

6
= 𝐂7𝐊 𝐂7 J

• Fast	model:	𝐔n = argmin
𝐔

𝐏J 𝐊 − 𝐂𝐔𝐂J 𝐏
]

𝟐
= 𝐏J𝐂 7(𝐏J𝐊𝐏) 𝐂J𝐏 7.

• Theory
• 𝑝 = 𝑂 &*

w
�

• 𝐏 is column selection matrix (according to the row leverage scores of 𝐂)

• Then	 𝐊 − 𝐂𝐔n𝐂J
]

6
≤ 1 + 𝜖 𝐊 − 𝐂𝐔⋆𝐂J

]

6

• Overall	time	cost:	𝑂 𝑝6𝑐 + 𝑛𝑐6 = 𝑂 𝑛𝑐�/𝜖
linear	in	𝑛
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The Nyström Method

• Cost
• Time:			𝑂 𝑛𝑐6
• Memory:			𝑂 𝑛𝑐

• Error	bound:	weak

Very	efficient!
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Comparisons

• 𝑐 = 150,	𝑛 = 100𝑐,	vary	𝑝 from	2𝑐 to	40𝑐

𝑝/𝑐

𝐊− 𝐂𝐔𝐂J
]

6

𝐊 ]
6

The	NyströmMethod
𝑂 𝑛𝑐6 time

The	Fast	Model
𝑂 𝑛𝑐6 + 𝑝6𝑐 time

The	Prototype	Model
𝑂 𝑛6𝑐 time



Conclusions

• Motivations
• Avoid	forming	the	kernel	matrix
• Avoid	inversion/decomposition

• Prototype	model,	fast	model,	Nystrom
• They	have	connections
• The	fast	model	and	Nystrom	are	practical


