Randomized SVD, CUR Decomposition,
and SPSD Matrix Approximation

Shusen Wang



Outhine

* CX Decomposition & Approximate SVD



CX Decomposition

* Given any matrix A € R™*"

* The CX decomposition of A
1. Sketching: C = AP € R™*¢
2. Find X'such that A = CX
e E.g. X* = argminx||A — CX||12: = CTA

* |t costs O(mnc)



Let the sketching matrix P € R™*¢ be defined in the table.
2 2
A-CX||. < (1+6) [|A—Agll

min
rank(X)<k

CX Decomposition

Uniform sampling Leverage score Gaussian SRHT Count sketch
sampling projection
1 1 k 1 , k
C 2 0] <vk <logk + E)) 0 (k (logk + E)) 0] (E) 0 <(k + logn) (log k + E)) 0] (k + E)

Vv is the column coherence of Ay,
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CX Decomposition < Approximate SVD

* CX decomposition < approximate SVD

A~ CX = UZ VX = UZ = UULE,

|

Let 2.V X = Z € RE*™

SVD: C = U EcVE € R™X¢

SVD: Z = U;X,V, € REX"

Time cost: O(mc? + nc? + nc?)



CX Decomposition < Approximate SVD

* CX decomposition < approximate SVD

mXs matrix with
orthonormal columns

A~ CX = UZcVIX = UcZ = ULU,2,VI—

sXn matrix with
orthonormal rows

Let 2 Vi X = Z € RX™ diagonal matrix

SVD: C = U EcVE € R™X¢

Time cost: O(mc? + nc? + nc? + mc?)

SVD: Z = U;X,V, € REX"




CX Decomposition < Approximate SVD

* CX decomposition < approximate SVD

* Done! Approximate rank ¢ SVD: A = (U-U,)Z,V;

A =~ CX = UZ VX = U.Z

Time cost: O(mc? + nc? + nc? + me?) = 0(mc? + nc?)

mXs matrix with
orthonormal columns

UcUz2Z,Vg—

sXn matrix with
orthonormal rows

diagonal matrix




CX Decomposition © Approximate SVD

* CX decomposition < approximate SVD

* Given A € R™* " and C € R"™*¢, the approximate SVD costs
* O(mnc) time
 O(mc + nc) memory
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* The CX decomposition of A € R™*"
e Optimal solution: X* = argminXHA — CX||12: =CTA
 How to make it more efficient?



CX Decomposition

* The CX decomposition of A € R™*"
e Optimal solution: X* = argminXHA — CX||12: =CTA
* How to make it more efficient? \

A regression problem!




Fast CX Decomposition

* Fast CX [prineas, Mahoney, Muthukrishnan, 2008][Clarkson & Woodruff, 2013]
* Draw another sketching matrix S € R™*S
» Compute X = argminy||ST (A — CX)||12: = (STC)T(STA)
* Time cost: O(ncs) + TimeOfSketch
* Whens = 0(c/e),
“A — C)’ZHi < (1 + ¢€) - ming||A — CX||12:
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CUR Decomposition

* Sketching
» C = AP; € R™X¢
* R=PiA € R™¥"
* Find U such that CUR = A

* CUR & Approximate SVD
* In the same way as “CX& Approximate SVD”



CUR Decomposition

* Sketching
» C = AP; € R™X¢
* R=PiA € R™¥"
* Find U such that CUR = A

* CUR & Approximate SVD
* In the same way as “CX& Approximate SVD”

* 3typesof U



CUR Decomposition

* Type 1 [Drineas, Mahoney, Muthukrishnan, 2008] .

U = (PIAP,)’

— L Y J
CXT rXn
L )
Y —

mXn mXc

A c U R



CUR Decomposition

* Type 1 [brineas, Mahoney, Muthukrishnan, 2008]:
U = (PIAP,)’
e Recall the fast CX decomposition
A ~ CX = ¢(PLc)"(PLA)
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CUR Decomposition

* Type 1 [brineas, Mahoney, Muthukrishnan, 2008]:
U = (PIAP,)’
e Recall the fast CX decomposition
A ~ CX = ¢(Pfc)"(P[A) = CUR
* They’re equivalent: CX = CUR

e Requirec = 0 (E) andr =0 (5) such that

€ €

||A—CUR||§ < (1+¢) ||A—Ak||§



CUR Decomposition

° Type 1 [Drineas, Mahoney, Muthukrishnan, 2008].
.l.
U = (PRAP)
* Efficient
* 0(rc?) + TimeOfSketch

e Loose bound

e Sketch size o< €2

* Bad empirical performance



CUR Decomposition

* Type 2: Optimal CUR
U* = min||A - CUR|[, = C"AR?



CUR Decomposition

* Type 2: Optimal CUR
U* = min||A - CUR|[, = C"AR?

* Theory w & zhang, 2013], [Boutsidis & Woodruff, 2014]
* C and R are selected by the adaptive sampling algorithm

cc=0()andr =0 (%)

€ €

[A—CUR||; < (1+6) ||A—Al|




CUR Decomposition

* Type 2: Optimal CUR
U* = min||A - CUR|[, = C"AR?

 |nefficient
 O(mnc) + TimeOfSketch



CUR Decomposition

¢ Type 3: Fast CUR [W, Zhang, Zhang, 2015]
* Draw 2 sketching matrices S¢ and Sg
* Solve the problem

U = min “sE(A - CUR)SR”i = (STC)"(STASR)(RSp)*

* Intuition?



CUR Decomposition

* The optimal U matrix is obtained by the optimization problem
U* = min||CUR — A||*
U F

min




CUR Decomposition

* Approximately solve the optimization problem, e.g. by column
selection

min

- _EE I
1k 1 =




CUR Decomposition

* Solve the small scale problem

min




CUR Decomposition

¢ Type 3: Fast CUR [W, Zhang, Zhang, 2015]
 Draw 2 sketching matrices S¢ € R™*Sc and Sg € R™*Sr
* Solve the problem

T 2 t
U = min ||SE(A - CUR)SR”F = (STc)"(SLASR)(RSR)*
* Theory

5= 0(Gonss =0 (2)

A— CﬁRHi <(1+¢) min||A- CUR”?

Cc
€




CUR Decomposition

¢ Type 3: Fast CUR [W, Zhang, Zhang, 2015]
 Draw 2 sketching matrices S¢ € R™*Sc and Sg € R™*Sr
* Solve the problem

o 2 ¥
U = min HSZ(A - CUR)SR”F = (STc)"(SLASR)(RSR)*

* Efficient
. O(SCST(C + r)) + TimeOfSketch

* Good empirical performance



A:
m = 1920
n=1168

CandR:
e ¢c=r=100
e uniform sampling

. L I )
L | _
'L

. l.'.“’ll'l

;:::.:ii o

':

'
. -naul.q nu

"'H

Type 1: Fast CX Type 3: Fast CUR Type 3: Fast CUR

Sc = 2¢, Sy = 2r Sc = 4c, Sy = 4r




Conclusions

* Approximate truncated SVD
* CX decomposition
* CUR decomposition (3 types)

e Fast CUR is the best



Outhine

* SPSD Matrix Approximation



Motivation 1: Kernel Matrix

* Given nn samples X4, -*-,X,, € R% and kernel function x(-,-).
* E.g. Gaussian RBF kernel

2
( “Xi—xj”z>
K(Xi,X]’) = exXp\ — .

o2




Motivation 1: Kernel Matrix

* Given nn samples X4, -*-,X,, € R% and kernel function x(-,-).
* E.g. Gaussian RBF kernel

2
( “Xi—xj”z>
K(Xi,X]’) = exXp\ — .

o2

e Computing the kernel matrix K € R™*"
e where kl] — K(Xi,Xj)
e costs 0(n?d) time



Motivation 2: Matrix Inversion

* Solve the linear system
(K+al)w=y

to find w € R".

e K € R™" js the kernel matrix
* v =|yq,,v,] € R" contains the labels
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Motivation 2: Matrix Inversion

* Solve the linear system
(K+al)w=y

to find w € R".
e Solution: w* = (K+ al,))" 1y
* |t costs
* 0(n3) time
* 0(n*) memory.
* Performed by

* Kernel ridge regression
e Least squares kernel SVM



Motivation 3: Eigenvalue Decomposition

* Find the top k (K n) eigenvectors of K.

* It costs
« O(n2k) time
* 0(n*) memory.



Motivation 3: Eigenvalue Decomposition

* Find the top k (K n) eigenvectors of K.

* It costs

. 0(n2%k) time

* 0(n*) memory.
* Performed by

* Kernel PCA (k is the target rank)
* Manifold learning (k is the target rank)



Computational Challenges

* Time costs
* Computing kernel matrix: 0(n“d)
* Matrix inversion: 0(n?)
e Rank k eigenvalue decomposition: 0 (n“k)



Computational Challenges

* Time costs

* Computing kernel matrix: 0(n“d)

* Matrix inversion: 0(n?)

e Rank k eigenvalue decomposition: 0 (n“k)

At least quadratic time!
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Computational Challenges

* Time costs
* Computing kernel matrix: 0(n®d)
* Matrix inversion: 0(n?)
* Rank k eigenvalue decomposition: 0(n?k)

* Memory costs

* Inversion and eigenvalue decomposition: 0 (n?)

* Because
* the numerical algorithms are pass-inefficient
= form K and keep it in memory

When n = 10°, the nxXn matrix costs 80GB memory!




How to Speedup?

* Efficiently form the low-rank approximation

K~CUCT
I
c XC cXn
nXxXn nXxc

K C U cT



How to Speedup?

* Efficiently form the low-rank approximation
K~CUCT
e Equivalent K ~ L LT



Efficient Matrix Inversion

* Solve the linear system (K + al,)w =y:

w* = (K+al) ly
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Efficient Matrix Inversion

* Approximately solve the linear system (K+ al, ) )w =y

* Replace Kby LLT: w* = (K+ al,) !y ~ (LLT + aln)_ly

e Expand the inversion by|the Woodbury identity‘

(A+BCD) '1=A"1-A"1B(C"'+DA'B)"1DA!



Efficient Matrix Inversion

* Approximately solve the linear system (K + al,)w =y

* Replace Kby LLT: w* = (K+ al,) !y ~ (LLT + aln)_ly
e Expand the inversion by the Woodbury identity
w*~a ly+a 'L(al + LTL) L'y



Efficient Matrix Inversion

* Approximately solve the linear system (K+ al,) )w =y
» Replace Kby LLT: w* = (K+ al,) !y = (LLT + aln)_ly
e Expand the inversion by the Woodbury identity
w* =~ a ly + a7 1L(al + LTL) LTy
* Time cost: 0(nc?)

Linear in n, much better than 0(n?)



Efficient Eigenvalue Decomposition

* Approximately compute the k-eigenvalue decomposition of K
e SVD: L = ULZLVL
« K~ LLT = U 2¢U]



Efficient Eigenvalue Decomposition

* Approximately compute the k-eigenvalue decomposition of K
e SVD: L = U X Vg,
« K~ LLT = U 2¢U]
* Approximate k- eigenvalue decomposition of K

* eigenvectors: the first k vectors in Uy,

e Time cost: 0(nc?)



Efficient Eigenvalue Decomposition

* Approximately compute the k-eigenvalue decomposition of K
e SVD: L = U X Vg,
« K~ LLT = U 2¢U]
* Approximate k- eigenvalue decomposition of K

* eigenvectors: the first k vectors in Uy,

e Time cost: 0(nc?)
e Much lower than 0 (n%k)



Sketching Based Models

* How to find such an approximation?

K~cCcuc?
nxn nXxc

K C U ct
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Sketching Based Models

* How to find such an approximation?
K~ CUC!
 Sketching based Methods: C = KS € R™*¢ is a sketch of K.

e S € R™€ can be column selection or random projection matrix

* Three methods:
* The prototype model [HMT11, Wz13, WLZ16]
* The fast model [wzz15]
* The Nystrom method [ws15, GM13]



The Prototype Model

e Objective: K = CUCT
* Minimize the approximation error by
2 T
U* = argmin “K — CUCT” = CTK(CT) .
U F



The Prototype Model

e Objective: K = CUCT
* Minimize the approximation error by
2 T
U* = argmin “K — CUCT” = CTK(CT) .
U F

Extension of the random SVD to SPSD matrix [HMT11]




The Prototype Model

e Objective: K = CUCT
* Minimize the approximation error by
2 T
U* = argmin “K — CUCT” = CTK(CT) .
U F

e Time: 0(n®c)

* The time complexity is nearly the same to the k-eigenvalue decomposition.
e Itis much faster than the k- eigenvalue decomposition in practice.
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* Minimize the approximation error by
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* #Passes: one



The Prototype Model

e Objective: K = CUCT
* Minimize the approximation error by
2 T
U* = argmin “K — CUCT” = CTK(CT) .
U F

e Time: 0(n®c)
* #Passes: one

* Memory: O(nc)
* Put k;j in memory only when it is visited
 Keep CTin memory



The Prototype Model

 Error Bound

* k L nis arbitrary integer

e Psamplesc =0 (%) columns by adaptive sampling

|| 2
. ]E“K—CU*C HF < (1+O)|IK—Kgl|



The Prototype Model

* Limitations
. U* = ctg(ch)’
* Time cost is 0 (n®c)
* Requires observing the whole of K



The Prototype Model

* Prototype model: K =~ C U* CT, where
2

U* = argmin “K — CUCTH .
U F

min

. I o

nxn nxc

K C U

cCXn




The Fast Model

* Column/row selection
« Form PTKP and PTC

min




The Fast Model

* Column/row selection
« Form PTKP and PTC

min

c
“HEE" AR W EEE N
_EEE NN NN NN EEE B

NN BN BN BN EEE B

" HEN BN BN BN EEE B

 ilN BN BN BN BEE B
I

nxn

PTKP




The Fast Model

e K~ CUCT, where ,
U = argmin “PT(K — CUCT)PHF.
U

min — . .
U . l ‘! - -
— T cXc CXp
pXPp pXc

PTKP pic U C'P



The Fast Model

2
* Prototype model: U* = argmin ||K — CUCTI\F = cTK(c?)’
U

2
* Fast model: U = argmin |[PT(K - cucT)P||” = (PTc)" (P"KP)(CTP) .
U F



The Fast Model

* Prototype model: U* = argmin “K - CUCTHE = ctr(ch)’
U
2
* Fast model: T = argmin |[PT(K - cucT)P||" = (PTc)" (PTKP)(CTP) .
U F

* Theory

p=o(fF

e Pis column selection matrix (according to the row leverage scores of C)

e Then ||K— CUCT||F <(+e) ||K— CU*CT”F

The faster model is nearly as good as the prototype model!




The Fast Model

Prototype model: U* = argmin “K - CUCTHE = ctr(ch)’
U
2
Fast model: T = argmin ||PT(K — cucT)P||” = (PTc) (PTKP)(CTP)".
u F

Theory

p=o(fF

e Pis column selection matrix (according to the row leverage scores of C)

e Then ||K— CUCT||F <(+e) ||K— CU*CT”F

Overall time cost: O(p?c + nc?) = 0(nc3/e)

linear in n




The Nystrom Method

nxn



The Nystrom Method

* S (nXc): column selection matrix
* C=KS (nXxc)




The Nystrom Method

* S (nXc): column selection matrix
« C = KS (nxc), W =STKS = STC (cxc)

cXcC cXn

nxn nXxc

K C w cT



The Nystrom Method

e S (nXc): column selection matrix
« C = KS (nxc), W =STKS = STC (cxc)
e The Nystrom method: K~ CWT CT

+
- S+

cXcC cXn

wi cT
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e The Nystrém method: K~ CWT CT
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X
* Setting P = §, then 2
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X
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The Nystrom Method

* S (nXc): column selection matrix
e C=KS (nxc), W= S'KS = S'C (cxc)
e The Nystrém method: K ~ CWT CT

* New explanation:

~

* Recall the fast model: X = argmin “PT(K — CXCT)P| ‘123
X

e Setting P = §, then

X = argmin “ST(K — cch)sH2
X F

= (sT¢)"(sTKs)(cTs)"
= WIwwT = wT

e The Nystrom method is special

instance of the fast model.




The Nystrom Method

* S (nXc): column selection matrix
e C=KS (nxc), W= S'KS = S'C (cxc)
e The Nystrém method: K ~ CWT CT

* New explanation:

* Recall the fast model: X = argmin “PT(K ~ CXCT)P”;
X

e Setting P = §, then

X = argmin “ST(K — cch)s”2
X F

= (sT¢)"(sTKs)(cTs)"
= WIwwT = wT

The Nystrom method is special
instance of the fast model.

It is approximate solution to the
prototype model




The Nystrom Method

* Cost
e Time: 0(nc?)
* Memory: 0(nc)
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* Cost
e Time: 0(nc?)
* Memory: 0(nc)

Very efficient!




The Nystrom Method

* Cost
e Time: 0(nc?)
* Memory: 0(nc)

Very efficient!

 Error bound: weak
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e« C=KS e R"™, W=S8TKS =8"Ce R
e SPSD matrix approximation: K ~ CUC!
* The prototype model: U = CTK(CT)T

* The fast model: U = (PTC)JF(PTKP)(CTP)Jr
e The Nystrém method: U = WT
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Comparisons

e« C=KS e R"™, W=S8TKS =8TC e R
e SPSD matrix approximation: K ~ CUC!
* The prototype model: U = CTK(CT)T

* The fast model: U = (PTC)JF(PTKP)(CTP)Jr
e The Nystrém method: U = WT

When P = S, the Nystrom method < the fast model




Comparisons

e ¢ =150,n = 100c, vary p from 2c¢ to 40c

006 I I I | I | | [ [
The Nystrom Method
0.055 | 0 (nc?) time
2
_ T
||K cuc ||F 0.05- ~
“K”i The Fast Model
0.045} 0(nc? + p?c) time
0.04
The Prototype Model
1 | I | I l l l I O(nZC) t|me
0 4 8 12 16 20 24 28 32 36 40



Conclusions

* Motivations
* Avoid forming the kernel matrix
 Avoid inversion/decomposition

* Prototype model, fast model, Nystrom
* They have connections
* The fast model and Nystrom are practical



