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Abstract

We address the statistical and optimization impacts of the classical sketch and Hessian
sketch used to approximately solve the Matrix Ridge Regression (MRR) problem. Prior
research has quantified the effects of classical sketch on the strictly simpler least squares
regression (LSR) problem. We establish that classical sketch has a similar effect upon the
optimization properties of MRR as it does on those of LSR: namely, it recovers nearly
optimal solutions. By contrast, Hessian sketch does not have this guarantee; instead, the
approximation error is governed by a subtle interplay between the “mass” in the responses
and the optimal objective value.

For both types of approximation, the regularization in the sketched MRR problem
results in significantly different statistical properties from those of the sketched LSR
problem. In particular, there is a bias-variance trade-off in sketched MRR that is not
present in sketched LSR. We provide upper and lower bounds on the bias and variance of
sketched MRR; these bounds show that classical sketch significantly increases the variance,
while Hessian sketch significantly increases the bias. Empirically, sketched MRR solutions
can have risks that are higher by an order-of-magnitude than those of the optimal MRR
solutions.

We establish theoretically and empirically that model averaging greatly decreases the
gap between the risks of the true and sketched solutions to the MRR problem. Thus, in
parallel or distributed settings, sketching combined with model averaging is a powerful
technique that quickly obtains near-optimal solutions to the MRR problem while greatly
mitigating the increased statistical risk incurred by sketching.
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1. Introduction

Regression is one of the most fundamental problems in machine learning. The simplest
and most thoroughly studied regression model is least squares regression (LSR). Given
features X = [xT1 ; . . . ,xTn ] ∈ Rn×d and responses y = [y1, . . . , yn]T ∈ Rn, the LSR problem
minw ‖Xw−y‖22 can be solved inO(nd2) time using the QR decomposition or inO(ndt) time
using accelerated gradient descent algorithms. Here, t is the number of iterations, which
depends on the initialization, the condition number of XTX, and the stopping criterion.

This paper considers the n� d problem, where there is much redundancy in X. Matrix
sketching, as used in the paradigm of Randomized Linear Algebra (RLA) (Mahoney, 2011;
Woodruff, 2014; Drineas and Mahoney, 2016), aims to reduce the size of X while limiting
information loss; the sketching operation can consist of sampling a subset of the rows of X, or
forming linear combinations of the rows of X. Either operation is modeled mathematically
by multiplication with a sketching matrix S to form the sketch STX. The sketching matrix
S ∈ Rn×s satisfies d < s � n so that STX generically has the same rank but much fewer
rows as X. Sketching has been used to speed up LSR (Drineas et al., 2006b, 2011; Clarkson
and Woodruff, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013) by solving the
sketched LSR problem minw ‖STXw−STy‖22 instead of the original LSR problem. Solving
sketched LSR costs either O(sd2 + Ts) time using the QR decomposition or O(sdt + Ts)
time using accelerated gradient descent algorithms, where t is as defined previously1 and
Ts is the time cost of sketching. For example, Ts = O(nd log s) when S is the subsampled
randomized Hadamard transform (Drineas et al., 2011), and Ts = O(nd) when S is a
CountSketch matrix (Clarkson and Woodruff, 2013).

There has been much work in RLA on analyzing the quality of sketched LSR with
different sketching methods and different objectives; see the reviews (Mahoney, 2011;
Woodruff, 2014; Drineas and Mahoney, 2016) and the references therein. The concept of
sketched LSR originated in the theoretical computer science literature, e.g., Drineas et al.
(2006b, 2011), where the behavior of sketched LSR was first studied from an optimization
perspective. Let w? be the optimal LSR solution and w̃ be the solution to sketched LSR.
This line of work established that if s = O(d/ε+poly(d)), then the objective value ‖Xw̃−y

∥∥2
2

is at most (1+ε) times greater than ‖Xw? − y
∥∥2
2
. These works also bounded ‖w̃ − w?‖22

in terms of the difference in the objective function values at w̃ and w? and the condition
number of XTX.

A more recent line of work has studied sketched LSR from a statistical perspective: Ma
et al. (2015); Raskutti and Mahoney (2016); Pilanci and Wainwright (2015); Wang et al.
(2017c) considered statistical properties of sketched LSR such as the bias and variance. In
particular, Pilanci and Wainwright (2015) showed that the solutions to sketched LSR have
much higher variance than the optimal solutions.

Both of these perspectives are important and of practical interest. The optimization
perspective is relevant when the approximate solution is used to initialize an (expensive)
iterative optimization algorithm; the statistical perspective is relevant in machine learning
and statistics applications where the approximate solution is directly used in lieu of the
optimal solution.

1. The condition number of XTSSTX is very close to that of XTX, and thus the number of iterations t is
almost unchanged.
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In practice, regularized regression, e.g., ridge regression and LASSO, exhibit more
attractive bias-variance trade-offs and generalization errors than vanilla LSR. Furthermore,
the matrix generalization of LSR, where multiple responses are to be predicted, is often
more useful than LSR. However, the properties of sketched regularized matrix regression
are largely unknown. Hence, we consider the question: how does our understanding of the
optimization and statistical properties of sketched LSR generalize to sketched regularized
regression problems? We answer this question for the sketched matrix ridge regression
(MRR) problem.

Recall that X is n× d. Let Y ∈ Rn×m denote a matrix of corresponding responses. We
study the MRR problem

min
W

{
f(W) , 1

n

∥∥XW −Y
∥∥2
F

+ γ‖W‖2F
}
, (1)

which has optimal solution

W? = (XTX + nγId)
†XTY. (2)

Here, (·)† denotes the Moore-Penrose inversion operation. LSR is a special case of MRR,
with m = 1 and γ = 0. The optimal solution W? can be obtained in O(nd2 + nmd) time
using a QR decomposition of X. Sketching can be applied to MRR in two ways:

Wc = (XTSSTX + nγId)
†(XTSSTY), (3)

Wh = (XTSSTX + nγId)
†XTY. (4)

Following the convention of Pilanci and Wainwright (2015); Wang et al. (2017a), we call
Wc the classical sketch and Wh the Hessian sketch. Table 1 lists the time costs of the
three solutions to MRR.

Table 1: The time cost of the solutions to MRR. Here Ts(X) and Ts(Y) denote the time
cost of forming the sketches STX ∈ Rs×d and STY ∈ Rs×m.

Solution Definition Time Complexity
Optimal Solution (2) O(nd2 + nmd)
Classical Sketch (3) O(sd2 + smd) + Ts(X) + Ts(Y)
Hessian Sketch (4) O(sd2 + nmd) + Ts(X)

1.1 Main Results and Contributions

We summarize all of our upper bounds in Table 2. Our optimization analysis bounds the
gap between the objective function values at the sketched and optimal solutions, while our
statistical analysis quantifies the behavior of the bias and variance of the sketched solutions
relative to those of the true solutions.

We first study classical and Hessian sketches from the optimization perspective.
Theorems 1 and 2 show:
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Table 2: A summary of our main results. In the table, W is the solution of classical/Hessian
sketch with or without model averaging (mod. avg.); W? is the optimal solution;

g is the number of models used in model averaging; and β =
‖X‖22
‖X‖22+nγ

≤ 1, where

γ is the regularization parameter. For conciseness, we take the sketching matrix
S ∈ Rn×s to correspond to Gaussian projection, SRHT, or shrinkage leverage score
sampling. Similar but more complex expressions hold for uniform sampling (with
or without model averaging) and CountSketch (only without model averaging.) All
the bounds hold with constant probability. The notation Õ conceals logarithmic
factors.

Classical Sketch Hessian Sketch

w/o mod. avg. w/ mod. avg. w/o mod. avg. w/ mod. avg.

s = Õ(d/ε) Õ(d/ε)

f(W)− f(W?) ≤ βεf(W?) β( ε
g

+ β2ε2)f(W?) β2ε
[ ‖Y‖2F

n
− f(W?)

]
β2( ε

g
+ ε2)

[ ‖Y‖2F
n
− f(W?)

]
Theorems Theorem 1 Theorem 7 Theorem 2 Theorem 8

s = Õ(d/ε2) Õ(d/ε2)
bias(W)
bias(W?)

≤ 1 + ε 1 + ε (1 + ε)(1 +
ε‖X‖22
nγ

) 1 + ε+
(
ε√
g

+ ε2
) ‖X‖22

nγ

var(W)
var(W?)

≤ (1 + ε)n
s

n
s

(√
1+ε/g
g

+ ε
)2

1 + ε 1 + ε

Theorems Theorem 5 Theorem 10 Theorem 6 Theorem 11

• Classical sketch achieves relative error in the objective value. With sketch size s =
Õ(d/ε), the sketched solution satisfies f(Wc) ≤ (1 + ε)f(W?).

• Hessian sketch does not achieve relative error in the objective value. In particular, if
1
n‖Y‖

2
F is much larger than f(W?), then f(Wh) can be far larger than f(W?).

• For both classical and Hessian sketch, the relative quality of approximation often
improves as the regularization parameter γ increases (because β decreases).

We then study classical and Hessian sketch from the statistical perspective, by
modeling Y = XW0 +Ξ as the sum of a true linear model and random noise, decomposing
the risk R(W) = E‖XW − XW0‖2F into bias and variance terms, and bounding these
terms. We draw the following conclusions (see Theorems 4, 5, 6 for the details):

• The bias of classical sketch can be nearly as small as that of the optimal solution. The
variance is Θ

(
n
s

)
times that of the optimal solution; this bound is optimal. Therefore

over-regularization2 should be used to supress the variance. (As γ increases, the bias
increases, and the variance decreases.)

2. For example, using a larger value of the regularization parameter γ than one would optimally choose for
the unsketched problem.
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• Since Hessian sketch uses the whole of Y, the variance of Hessian sketch can be
close to that of the optimal solution. However, Hessian sketch incurs a high bias,
especially when nγ is small compared to ‖X‖22. This indicates that over-regularization
is necessary for Hessian sketch to deliver solutions with low bias.

Our empirical evaluations bear out these theoretical results. In particular, in Section 4,
we show in Figure 3 that even when the regularization parameter γ is fine-tuned, the risks
of classical and Hessian sketch are worse than that of the optimal solution by an order of
magnitude. This is an empirical demonstration of the fact that the near-optimal properties
of sketch from the optimization perspective are much less relevant in a statistical setting
than its sub-optimal statistical properties.

We propose to use model averaging, which averages the solutions of g sketched MRR
problems, to attain lower optimization and statistical errors. Without ambiguity, we denote
model-averaged classical and Hessian sketches by Wc and Wh, respectively. Theorems 7,
8, 10, 11 establish the following results:

• Classical Sketch. Model averaging decreases the objective function value and the
variance and does not increase the bias. Specifically, with the same sketch size s,
model averaging ensures f(Wc)−f(W?)

f(W?) and var(Wc)
var(W?) respectively decrease to almost 1

g
of those of classical sketch without model averaging, provided that s� d. See Table 2
for the details.

• Hessian Sketch. Model averaging decreases the objective function value and the bias
and does not increase the variance.

In the distributed setting, the feature-response pairs (x1,y1), · · · , (xn,yn) ∈ Rd × Rm are
divided among g machines. Assuming that the data have been shuffled randomly, each
machine contains a sketch of the MRR constructed by uniformly sampling rows from the
data set without replacement. We illustrate this procedure in Figure 1. In this setting,
the model averaging procedure communicates the g local models only once to return the
final estimate; this process has very low communication and latency costs, and suggests two
further applications of classical sketch with model averaging:

• Model Averaging for Machine Learning. When a low-precision solution is acceptable,
model averaging can be used in lieu of distributed numerical optimization algorithms
requiring multiple rounds of communication. If n

g is large enough compared to d
and the row coherence of X is small, then “one-shot” model averaging has bias and
variance comparable to the optimal solution.

• Model Averaging for Optimization. If a high-precision solution to MRR is required,
then an iterative numerical optimization algorithm must be used. The cost of such
algorithms heavily depends on the quality of the initialization.3 A good initialization
reduces the number of iterations needed to reach convergence. The averaged model

3. For example, the conjugate gradient method satisfies
‖W(t)−W?‖2F
‖W(0)−W?‖2

F

≤ θt1 and stochastic block coordinate

descent (Tu et al., 2016) satisfies Ef(W(t))−f(W?)

f(W(0))−f(W?)
≤ θt2. Here W(t) is the output of the t-th iteration;

θ1, θ2 ∈ (0, 1) depend on the condition number of XTX + nγId and some other factors.
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Figure 1: Using model averaging with the classical sketch in the distributed setting to
approximately solve LSR.

is provably close to the optimal solution, so model averaging provides a high-quality
initialization for more expensive algorithms.

1.2 Prior Work

The body of work on sketched LSR mentioned earlier (Drineas et al., 2006b, 2011; Clarkson
and Woodruff, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013) shares many
similarities with our results. However, the theories of sketched LSR developed from the
optimization perspective do not obviously extend to MRR, and the statistical analysis of
LSR and MRR differ: among other differences, LSR is unbiased while MRR is biased and
therefore has a bias-variance tradeoff that must be considered.

Lu et al. (2013) has considered a different application of sketching to ridge regression:
they assume d � n, reduce the number of features in X using sketching, and conduct
statistical analysis. Our setting differs in that we consider n � d, reduce the number of
samples by sketching, and allow for multiple responses.

The model averaging analyzed in this paper is similar in spirit to the AvgM algorithm
of (Zhang et al., 2013). When classical sketch is used with uniform row sampling without
replacement, our model averaging procedure is a special case of AvgM. However, our results
do not follow from those of (Zhang et al., 2013). First, we make no assumption on the
data, X and Y, and the model (parameters), W. Second, we study both the optimization
objective, ‖XWc−XW?‖2F , and the statistical objective, E‖XWc−XW0‖2F , where Wc is
the average of the approximate solutions obtained used classical sketch, W0 is the unknown
ground truth, and W? is the optimal solution based on the observed data; they studied solely
the optimization objective. Third, our results apply to many other sketching ensembles than
uniform sampling without replacement. Our results clearly indicate that the performance
critically depends on the row coherence of X; this dependence has not been explicitly
captured in (Zhang et al., 2013). Zhang et al. (2015) studied a different statistical objective
and their resulting bound has a higher-order of dependence on d and other parameters.
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Iterative Hessian sketch has been studied in Pilanci and Wainwright (2015); Wang et al.
(2017a,b). By way of comparison, all the algorithms in this paper are “one-shot” rather than
iterative. This work has connections to the contemporary works (Avron et al., 2017; Thanei
et al., 2017; Derezinski and Warmuth, 2017, 2018). Avron et al. (2017) studied classical
sketch from the optimization perspective; Thanei et al. (2017) studied LSR with model
averaging; Derezinski and Warmuth (2017, 2018) studied linear regression with volume
sampling for experimental design.

1.3 Paper Organization

Section 2 defines our notation and introduces the sketching schemes we consider. Section 3
presents our theoretical results. Sections 4 and 5 conduct experiments to verify our theories
and demonstrates the efficacy of model averaging. Section 6 sketches the proofs of our main
results. Complete proofs are provided in the appendix.

2. Preliminaries

Throughout, we take In to be the n× n identity matrix and 0 to be a vector or matrix of
all zeroes of the appropriate size. Given a matrix A = [aij ], the i-th row is denoted by ai:,
and the j-th column is denoted by a:j . The Frobenius and spectral norms of A are written
as, respectively, ‖A‖F and ‖A‖2. The set {1, 2, · · · , n} is written [n]. Let O, Ω, and Θ be
the standard asymptotic notation, and let Õ conceal logarithmic factors.

Throughout, we fix X ∈ Rn×d as our matrix of features. We set ρ = rank(X) and write
the SVD of X as X = UΣVT , where U, Σ, V are respectively n × ρ, ρ × ρ, and d × ρ
matrices. We let σ1 ≥ · · · ≥ σρ > 0 be the singular values of X. The Moore-Penrose inverse
of X is defined by X† = VΣ−1UT . The row leverage scores of X are li = ‖u:i‖22 for i ∈ [n].
The row coherence of X is µ(X) = n

ρ maxi ‖u:i‖22. Throughout, we let µ be shorthand for
µ(X). The notation defined in Table 3 is used throughout this paper.

Matrix sketching attempts to reduce the size of large matrices while minimizing the loss
of spectral information that is useful in tasks like linear regression. We denote the process
of sketching a matrix X ∈ Rn×d by X′ = STX. Here, S ∈ Rn×s is called a sketching matrix
and X′ ∈ Rs×d is called a sketch of X. In practice, except for Gaussian projection (where
the entries of S are i.i.d. sampled from N (0, 1/s)), the sketching matrix S is not formed
explicitly.

Matrix sketching can be accomplished by random sampling or random projection.
Random sampling corresponds to sampling rows of X i.i.d. with replacement according to
given row sampling probabilities p1, · · · , pm ∈ (0, 1). The corresponding (random) sketching
matrix S ∈ Rn×s has exactly one non-zero entry, whose position indicates the index of the
selected row in each column; in practice, this S is not explicitly formed. Uniform sampling
fixes p1 = · · · = pn = 1

n . Leverage score sampling sets pi proportional to the (exact
or approximate (Drineas et al., 2012)) row leverage scores li of X. In practice shrinked
leverage score sampling can be a better choice than leverage score sampling (Ma et al.,
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Table 3: The commonly used notation.
Notation Definition

X ∈ Rn×d each row is a data sample (feature vector)

Y ∈ Rn×m each row contains the corresponding responses

UΣVT the SVD of X

ρ the rank of X

µ the row coherence of X

σi the i-th largest singular value of X

γ the regularization parameter

β β =
‖X‖22
‖X‖22+nγ

≤ 1

S ∈ Rn×s the sketching matrix

W? ∈ Rd×m the optimal solution (2)

Wc ∈ Rd×m approximate solution obtained using the classical sketch (3)

Wh ∈ Rd×m approximate solution obtained using the Hessian sketch (4)

W0 ∈ Rd×m the unknown ground truth (in the statistical setting)

2015). The sampling probabilities of shrinked leverage score sampling are defined by
pi = 1

2

(
li∑n
j=1 lj

+ 1
n

)
.4

The exact leverage scores are unnecessary in practice; constant-factor approximation
to the leverage scores is sufficient. Leverage scores can be efficiently approximated by the
algorithms of (Drineas et al., 2012). Let l1, · · · , ln be the true leverage scores. We denote
the approximate leverages by l̃1, · · · , l̃n and require that they satisfy

l̃q ∈ [lq, τ lq] for all q ∈ [n], (5)

where τ ≥ 1 indicates the quality of approximation. We then use pq = l̃q/
∑

j l̃j as
the sampling probabilities. One can obtain the same accuracies when using approximate
leverage scores in place of the true leverage scores by increasing s by a factor of τ , so as
long as τ is a small constant, the orders of the sketch sizes when using exact or approximate
leverage score sampling are the same. Thus we do not distinguish between exact and
approximate leverage scores in this paper. For shrinked leverage score sampling, we define
the sampling probabilities

pi = 1
2

(
l̃i∑n
j=1 l̃j

+ 1
n

)
for i = 1, . . . , n. (6)

Gaussian projection is also well-known as the prototypical Johnson-Lindenstrauss
transform (Johnson and Lindenstrauss, 1984). Let G ∈ Rn×s be a standard Gaussian
matrix, i.e., each entry is sampled independently from N (0, 1). The matrix S = 1√

s
G is a

Gaussian projection matrix. It takes O(nds) time to apply S ∈ Rn×s to any n × d dense
matrix, which makes Gaussian projection computationally inefficient relative to other forms
of sketching.

4. In fact, pi can be any convex combination of li∑n
j=1 lj

and 1
n

(Ma et al., 2015). We use the weight 1
2

for

convenience; our conclusions extend in a straightforward manner to other weightings.
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The Subsampled randomized Hadamard transform (SRHT) (Drineas et al.,
2011; Lu et al., 2013; Tropp, 2011) is a more efficient alternative to Gaussian projection.
Let Hn ∈ Rn×n be the Walsh-Hadamard matrix with +1 and −1 entries, D ∈ Rn×n be a
diagonal matrix with diagonal entries sampled uniformly from {+1,−1}, and P ∈ Rn×s be
the uniform row sampling matrix defined above. The matrix S = 1√

n
DHnP ∈ Rn×s is an

SRHT matrix, and can be applied to any n × d matrix in O(nd log s) time. In practice,
the subsampled randomized Fourier transform (SRFT) (Woolfe et al., 2008) is often used
in lieu of the SRHT, because the SRFT exists for all values of n, whereas Hn exists only
for some values of n. Their performance and theoretical analyses are very similar.

CountSketch can be applied to any X ∈ Rn×d in O(nd) time (Charikar et al., 2004;
Clarkson and Woodruff, 2013; Meng and Mahoney, 2013; Nelson and Nguyên, 2013; Pham
and Pagh, 2013; Weinberger et al., 2009). Though more efficient to apply, CountSketch
requires a larger sketch size than Gaussian projections, SRHT, and leverage score sampling
to attain the same theoretical guarantees. Interested readers can refer to (Woodruff, 2014)
for a detailed description of CountSketch. Unlike the other sketching methods mentioned
here, model averaging with CountSketch may not be theoretically sound. See Remark 5 for
further discussion.

3. Main Results

Sections 3.1 and 3.2 analyze sketched MRR from, respectively, the optimization and
statistical perspectives. Sections 3.3 and 3.4 capture the impacts of model averaging on,
respectively, the optimization and statistical properties of sketched MRR.

We described six sketching methods in Section 2. For simplicity, in this section, we
refer to leverage score sampling, shrinked leverage score sampling, Gaussian projection,
and SRHT as the four sketching methods while we refer to uniform sampling and

CountSketch by name. Throughout, let µ be the row coherence of X and β =
‖X‖22
‖X‖22+nγ

≤ 1.

3.1 Sketched MRR: Optimization Perspective

Theorem 1 shows that f(Wc), the objective value of classical sketch, is close to the optimal
objective value f(W?), and that the approximation quality improves as the regularization
parameter γ increases.

Theorem 1 (Classical Sketch) Let β =
‖X‖22
‖X‖22+nγ

≤ 1. For the four sketching methods

with s = Õ
(
d
ε

)
, uniform sampling with s = O

(µd log d
ε

)
, and CountSketch with s = O

(
d2

ε

)
,

the inequality

f(Wc)− f(W?) ≤ εβ f(W?)

holds with probability at least 0.9. The uncertainty is with respect to the random choice of
sketching matrix.

The corresponding guarantee for the performance of Hessian sketch is given in
Theorem 2. It is weaker than the guarantee for classical sketch, especially when 1

n‖Y‖
2
F is

far larger than f(W?). If Y is nearly noiseless—Y is well-explained by a linear combination

9



Wang, Gittens, and Mahoney

of the columns of X—and γ is small, then f(W?) is close to zero, and consequently f(W?)
can be far smaller than 1

n‖Y‖
2
F . Therefore, in this case which is ideal for MRR, f(Wh)

is not close to f(W?) and our theory suggests Hessian sketch does not perform as well as
classical sketch. This is verified by our experiments (see Figure 2), which show that unless

γ is large or a large portion of Y is outside the column space of X, the ratio f(Wh)
f(W?) can be

large.

Theorem 2 (Hessian Sketch) Let β =
‖X‖22
‖X‖22+nγ

≤ 1. For the four sketching methods

with s = Õ
(
d
ε

)
, uniform sampling with s = O

(µd log d
ε

)
, and CountSketch with s = O(d

2

ε ),
the inequality

f(Wh)− f(W?) ≤ εβ2
(
‖Y‖2F
n − f(W?)

)
.

holds with probability at least 0.9. The uncertainty is with respect to the random choice of
sketching matrix.

These two results imply that f(Wc) and f(Wh) can be close to f(W?). When this is
the case, curvature of the objective function ensures that the sketched solutions Wc and
Wh are close to the optimal solution W?. Lemma 3 bounds the Mahalanobis distance
‖M(W −W?)‖2F . Here M is any non-singular matrix; in particular, it can be the identity
matrix or (XTX)1/2. Lemma 3 is a consequence of Lemma 25.

Lemma 3 (Mahalanobis Distance) Let f be the objective function of MRR defined in
(1), W ∈ Rd×m be arbitrary, and W? be the optimal solution defined in (2). For any
non-singular matrix M, the Mahalanobis distance satisfies

1

n

∥∥M(W −W?)
∥∥2
F
≤ f(W)− f(W?)

σ2
min

[
(XTSSTX + nγId)1/2M−1

] .
By choosing M = (XTX)1/2, we can bound 1

n‖XW−XW?‖2F in terms of the difference
in the objective values:

1
n

∥∥XW −XW?
∥∥2
F
≤ β

[
f(W)− f(W?)

]
,

where β =
‖X‖22
‖X‖22+nγ

≤ 1. With Lemma 3, we can directly apply Theorems 1 or 2 to bound
1
n‖XWc −XW?‖2F or 1

n‖XWh −XW?‖2F .

3.2 Sketched MRR: Statistical Perspective

We consider the following fixed design model. Let X ∈ Rn×d be the observed feature matrix,
W0 ∈ Rd×m be the true and unknown model, Ξ ∈ Rn×m contain unknown random noise,
and

Y = XW0 + Ξ (7)

be the observed responses. We make the following standard weak assumptions on the noise:

E[Ξ] = 0 and E[ΞΞT ] = ξ2In.
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We observe X and Y and seek to estimate W0.
We can evaluate the quality of the estimate by the risk:

R(W) = 1
nE
∥∥XW −XW0

∥∥2
F
, (8)

where the expectation is taken w.r.t. the noise Ξ. We study the risk functions R(W?),
R(Wc), and R(Wh) in the following.

Theorem 4 (Bias-Variance Decomposition) We consider the data model described in
this subsection. Let W be W?, Wc, or Wh, as defined in (2), (3), or (4), respectively; then
the risk function can be decomposed as

R(W) = bias2(W) + var(W).

Recall the SVD of X defined in Section 2: X = UΣVT . The bias and variance terms can
be written as

bias
(
W?

)
= γ

√
n
∥∥∥(Σ2 + nγIρ)

−1ΣVTW0

∥∥∥
F
,

var
(
W?

)
= ξ2

n

∥∥∥(Iρ + nγΣ−2
)−1∥∥∥2

F
,

bias
(
Wc

)
= γ

√
n
∥∥∥(UTSSTU + nγΣ−2

)†
Σ−1VTW0

∥∥∥
F
,

var
(
Wc

)
= ξ2

n

∥∥∥(UTSSTU + nγΣ−2
)†

UTSST
∥∥∥2
F
,

bias
(
Wh

)
= γ

√
n
∥∥∥(Σ−2 +

UTSSTU−Iρ
nγ

)(
UTSSTU + nγΣ−2

)†
ΣVTW0

∥∥∥
F
,

var
(
Wh

)
= ξ2

n

∥∥∥(UTSSTU + nγΣ−2
)†∥∥∥2

F
.

The functions bias(W?) and var(W?) are deterministic. The randomness in bias(Wc),
var(Wc), bias(Wh), and var(Wh) all arises from the sketching matrix S.

Throughout this paper, we compare the bias and variance of classical sketch and Hessian
sketch to those of the optimal solution W?. We first study the bias, variance, and risk of
W?, which will help us understand the subsequent comparisons. We can assume that
Σ2 = VTXTXV is linear in n; this is reasonable because XTX =

∑n
i=1 xix

T
i and V is an

orthogonal matrix.

• Bias. The bias of W? is independent of n and is increasing with γ. The bias is the
price paid for using regularization to decrease the variance; for least squares regression,
γ is zero, and the bias is zero.

• Variance. The variance of W? is inversely proportional to n. As n grows, the
variance decreases to zero, and we must also decrease γ to ensure that the sum of the
squared bias and variance decreases to zero.

• Risk. Note that W? is not the minimizer of R(·); W0 is the minimizer because
R(W0) = 0. Nevertheless, because W0 is unknown, W? for a carefully chosen γ is
a standard proxy for the exact minimizer in practice. It is thus highly interesting to
compare the risk of MRR solutions obtained using sketching to to R(W?).

11
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Theorem 5 provides upper and lower bounds on the bias and variance of solutions
obtained using classical sketch. In particular, we see that that bias(Wc) is within a factor
of (1 ± ε) of bias(W?). However, var(Wc) can be Θ(ns ) times worse than var(W?). The
absolute value of var(Wc) is inversely proportional to s, whereas the absolute value of
bias(Wc) is almost independent of s.

Theorem 5 (Classical Sketch) Assume s ≤ n. For Gaussian projection and SRHT
sketching with s = Õ( d

ε2
), uniform sampling with s = O(µd log d

ε2
), or CountSketch with

s = O(d
2

ε2
), the inequalities

1− ε ≤ bias(Wc)
bias(W?) ≤ 1 + ε,

(1− ε)ns ≤ var(Wc)
var(W?) ≤ (1 + ε)ns

hold with probability at least 0.9. For shrinked leverage score sampling with s = O(d log d
ε2

),
these inequalities, except for the lower bound on the variance, hold with probability at least
0.9. Here the randomness comes from the sketching matrix S.

Remark 1 To establish an upper (lower) bound on the variance, we need an upper (lower)
bound on ‖S‖22. There is no nontrivial upper nor lower bound on ‖S‖22 for leverage score
sampling, so the variance of leverage score sampling cannot be bounded. Shrinked leverage
score sampling satisfies the upper bound ‖S‖22 ≤ 2n

s ; but ‖S‖22 does not have a nontrivial
lower bound, so there is no nontrivial lower bound on the variance of shrinked leverage
score. Remark 4 explains the nonexistence of the relevant bounds on ‖S‖22 for both variants
of leverage score sampling.

Theorem 6 establishes similar upper and lower bounds on the bias and variance of
solutions obtained using Hessian sketch. The situation is the reverse of that with classical
sketch: the variance of Wh is close to that of W? if s is large enough, but as the
regularization parameter γ goes to zero, bias(Wh) becomes much larger than bias(W?).
The theory suggest that Hessian sketch should be preferred over classical sketch when Y is
very noisy, because Hessian sketch does not magnify the variance.

Theorem 6 (Hessian Sketch) For the four sketching methods with s = Õ( d
ε2

), uniform

sampling with s = O(µd log d
ε2

), and CountSketch with s = O(d
2

ε2
), the inequalities

bias(Wh)
bias(W?) ≤ (1 + ε)

(
1 +

ε‖X‖22
nγ

)
,

1− ε ≤ var(Wh)
var(W?) ≤ 1 + ε

hold with probability at least 0.9. Further assume that the ρ-th singular value of X satisfies
σ2ρ ≥

nγ
ε , then

bias(Wh)
bias(W?) ≥

1
1+ε

( εσ2
ρ

nγ − 1
)

with probability at least 0.9. Here the randomness is in the choice of sketching matrix S.

12
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The lower bound on the bias shows that the solution from Hessian sketch can exhibit
a much higher bias than the optimal solution. The gap between bias(Wh) and bias(W?)
can be lessened by increasing the regularization parameter γ, but such over-regularization
increases the baseline bias(W?) itself. It is also worth mentioning that unlike bias(W?)
and bias(Wc), bias(Wh) is not monotonically increasing with γ, as is empirically verified in
Figure 3.

In sum, our theory shows that the classical and Hessian sketches are not statistically
comparable to the optimal solutions: classical sketch has too high a variance, and Hessian
sketch has too high a bias for reasonable amounts of regularization. In practice, the
regularization parameter γ should be tuned to optimize the prediction accuracy. Our
experiments in Figure 3 show that even with carefully chosen γ, the risks of classical and
Hessian sketch can be higher than the risk of the optimal solution by an order of magnitude.
Formally speaking, minγ R(Wc) � minγ R(W?) and minγ R(Wh) � minγ R(W?) hold in
practice.

Our empirical study in Figure 3 suggests classical and Hessian sketch both require over-
regularization, i.e., setting γ larger than is best for the optimal solution W?. Formally
speaking, argminγ R(Wc) > argminγ R(W?) and argminγ R(Wh) > argminγ R(W?).
Although this is the case for both types of sketching, the underlying explanations are
different. Classical sketches have a high variance, so a large γ is required to supress their
variance (the variance is non-increasing with γ). Hessian sketches magnify the bias when γ
is small, so a reasonably large γ is necessary to lower their bias.

3.3 Model Averaging: Optimization Perspective

We consider model averaging as a method to increase the accuracy of sketched MRR
solutions. The model averaging procedure is straightforward: one independently draws
g sketching matrices S1, · · · ,Sg ∈ Rn×s, uses these to form g sketched MRR solutions,
denoted by {Wc

i}
g
i=1 or {Wh

i }
g
i=1, and averages these solutions to obtain the final estimate

Wc = 1
g

∑g
i=1 Wc

i or Wh = 1
g

∑g
i=1 Wh

i . Practical applications of model averaging are
enumerated in Section 1.1.

Theorems 7 and 8 present guarantees on the optimization accuracy of using model
averaging on classical/Hessian sketch solutions. We can contrast these with the guarantees
provided for sketched MRR in Theorems 1 and 2. For classical sketch with model averaging,
we see that when ε ≤ 1

g , the bound on f(Wh)−f(W?) is proportional to ε/g. From Lemma 3
we see that the distance between Wc and W? also decreases accordingly.

Theorem 7 (Classical Sketch with Model Averaging) Let β =
‖X‖22
‖X‖22+nγ

≤ 1. For

the four methods, let s = Õ
(
d
ε

)
, and for uniform sampling, let s = O

(µd log d
ε

)
, then the

inequality

f(Wc)− f(W?) ≤ β
( ε
g

+ β2ε2
)
f(W?)

holds with probability at least 0.8. Here the randomness comes from the choice of sketching
matrices.

For Hessian sketch with model averaging, if ε < 1
g , then the bound on f(Wh)− f(W?)

is proportional to ε
g .

13
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Theorem 8 (Hessian Sketch with Model Averaging) Let β =
‖X‖22
‖X‖22+nγ

≤ 1. For the

four methods let s = Õ
(
d
ε

)
, and for uniform sampling let s = O

(µd log d
ε

)
, then the inequality

f(Wh)− f(W?) ≤ β2
( ε
g

+ ε2
)(‖Y‖2F

n
− f(W?)

)
holds with probability at least 0.8. Here the randomness comes from the choice of sketching
matrices.

3.4 Model Averaging: Statistical Perspective

Model averaging has the salutatory property of reducing the risks of the classical and Hessian
sketches. Our first result conducts a bias-variance decomposition for the averaged solution
of the sketched MRR problem.

Theorem 9 (Bias-Variance Decomposition) We consider the fixed design model (7).
Decompose the risk function defined in (8) as

R(W) = bias2(W) + var(W).

The bias and variance terms are

bias
(
Wc

)
= γ

√
n

∥∥∥∥1

g

g∑
i=1

(
UTSiS

T
i U + nγΣ−2

)†
Σ−1VTW0

∥∥∥∥
F

,

var
(
Wc

)
=

ξ2

n

∥∥∥∥1

g

g∑
i=1

(
UTSiS

T
i U + nγΣ−2

)†
UTSiS

T
i

∥∥∥∥2
F

,

bias
(
Wh

)
= γ

√
n

∥∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)(
UTSiS

T
i U + nγΣ−2

)†
ΣVTW0

∥∥∥∥
F

,

var
(
Wh

)
=

ξ2

n

∥∥∥∥1

g

g∑
i=1

(
UTSiS

T
i U + nγΣ−2

)†∥∥∥∥2
F

.

Theorems 10 and 11 provide upper bounds on the bias and variance of averaged sketched
MRR solutions for, respectively, classical sketch and Hessian sketch. We can contrast them
with Theorems 5 and 6 to see the statistical benefits of model averaging. Theorem 10 shows
that when g ≈ n

s , classical sketch with model averaging yields a solution with comparable
bias and variance to the optimal solution.

Theorem 10 (Classical Sketch with Model Averaging) For the four sketching meth-

ods with s = Õ
(
d
ε2

)
, or uniform sampling with s = O

(µd log d
ε2

)
, the inequalities

bias(Wc)

bias(W?)
≤ 1 + ε and

var(Wc)

var(W?)
≤ n

s

(√
1 + ε√
h

+ ε

)2

,

where h = min{g, Θ(ns )}, hold with probability at least 0.8. The randomness comes from
the choice of sketching matrices.

Theorem 11 shows that model averaging decreases the bias of Hessian sketch without
increasing the variance. For Hessian sketch without model averaging, recall that bias(Wh) is
larger than bias(W?) by a factor of O(‖X‖22/(nγ)). Theorem 11 shows that model averaging
significantly reduces the bias.
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Theorem 11 (Hessian Sketch with Model Averaging) For the four sketching meth-

ods with s = Õ
(
d
ε2

)
, or uniform sampling with s = O

(µd log d
ε2

)
, the inequalities

bias(Wh)

bias(W?)
≤ 1 + ε+

( ε
√
g

+ ε2
)‖X‖22
nγ

and
var(Wh)

var(W?)
≤ 1 + ε

hold with probability at least 0.8. Here the randomness comes from the choice of sketching
matrices.

4. Experiments on Synthetic Data

We conduct experiments on synthetic data to verify our theory. Section 4.1 describes the
data model and experiment settings. Sections 4.2 and 4.3 empirically study classical and
Hessian sketch from the optimization and statistical perspectives, respectively, to verify
Theorems 1, 2, 5, and 6. Sections 4.4 and 4.5 study model averaging from the optimization
and statistical perspectives, respectively, to corroborate Theorems 7, 8, 10, and 11.

4.1 Settings

Following (Ma et al., 2015; Yang et al., 2016), we construct X = Udiag(σ)VT ∈ Rn×d and
y = Xw0 + ε ∈ Rn in the following way.

• We take U be the matrix of left singular vectors of A ∈ Rn×d which is constructed
in the following way. (Note that A and X are different.) Let the rows of A be i.i.d.
sampled from a multivariate t-distribution with covariance matrix C and v = 2 degree
of freedom, where the (i, j)-th entry of C ∈ Rd×d is 2 × 0.5|i−j|. Constructing A in
this manner ensures that it has high row coherence.

• Let the entries of b ∈ Rd be equally spaced between 0 and −6 and take σi = 10bi for
all i ∈ [d].

• Let V ∈ Rd×d be an orthonormal basis for the column range of a d × d standard
Gaussian matrix.

• Let w0 = [10.2d; 0.1 10.6d; 10.2d].

• Take the entries of ε ∈ Rn to be i.i.d. samples from the N (0, ξ2) distribution.

This construction ensures that X has high row coherence, and its condition number is
κ(XTX) = 1012. Let S ∈ Rn×s be any of the six sketching methods considered in this paper.
We fix n = 105, d = 500, and s = 5, 000. Since the sketching methods are randomized, we
repeat each trial 10 times with idependent sketches and report averaged results.

4.2 Sketched MRR: Optimization Perspective

We seek to empirically verify Theorems 1 and 2 which study classical and Hessian sketches,
respective, from the optimization perspective. In Figure 2, we plot the objective function
value f(w) = 1

n‖Xw − y‖22 + γ‖w‖22 against γ, under different settings of ξ (the standard
deviation of the Gaussian noise added to the response). The black curves correspond to the
optimal solution w?; the color curves correspond to classical or Hessian sketch with different
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Figure 2: An empirical study of classical and Hessian sketch from the optimization
perspective. The x-axis is the regularization parameter γ (log scale); the y-axis
is the objective function values (log scale). Here ξ is the standard deviation of
the Gaussian noise added to the response.

sketching methods. The results verify our theory: the objective value of the solution from
the classical sketch, wc, is always close to optimal; and the objective value of the solution
from the Hessian sketch, wh, is much worse than the optimal value when γ is small and y
is mostly in the column space of X.

4.3 Sketched MRR: Statistical Perspective

In Figure 3, we plot the analytical expressions for the squared bias, variance, and risk stated
in Theorem 4 against the regularization parameter γ. Because these expressions involve the
random sketching matrix S, we randomly generate S, repeat this procedure 10 times, and
report the average of the computed squared biases, variances, and risks. We fix ξ = 0.1 (the
standard deviation of the Gaussian noise). The results of this experiment match our theory:
classical sketch magnified the variance, and Hessian sketch increased the bias. Even when γ
is fine-tuned, the risks of classical and Hessian sketch can be much higher than those of the
optimal solution. Our experiment also indicates that classical and Hessian sketch require
setting γ larger than the best regularization parameter for the optimal solution W?.

Classical and Hessian sketch do not outperform each other in terms of the risk. When
variance dominates bias, Hessian sketch is better in terms of the risk; when bias dominates
variance, classical sketch is preferable. In the experiment yielding Figure 3, Hessian sketch
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Figure 3: An empirical study of classical sketch and Hessian sketch from the statistical
perspective. The x-axis is the regularization parameter γ (log-scale); the y-axes
are respectively bias2, variance, and risk (log-scale). We indicate the minimum
risks and optimal choice of γ in the plots.

delivers lower risks than classical sketch. This is not generally true: if we use a smaller ξ
(the standard deviation of the Gaussian noise), so that the variance is dominated by bias,
then classical sketch results in lower risks than Hessian sketch.

4.4 Model Averaging: Optimization Objective

We consider different noise levels by setting ξ = 10−2 or 10−1, where ξ is defined in
Section 4.1 as the standard deviation of the Gaussian noise in the response vector y. We
calculate the objective function values f(wc

[g]) and f(wh
[g]) for different settings of g, γ. We

use different methods of sketching at the fixed sketch size s = 5, 000.
Theorem 7 indicates that for large s, e.g., Gaussian projection with s = Õ

(
d
ε

)
,

f
(
wc

[g]

)
− f

(
w?
)
≤ β

(
ε
g + β2ε2

)
f(w?), (9)

where β =
‖X‖22
‖X‖22+nγ

≤ 1. In Figure 4(a) we plot the ratio

f(wc
[1]

)−f(w?)

f(wc
[g]

)−f(w?) (10)

against g. Rapid growth of this ratio indicates that model averaging is highly effective. The
results in Figure 4(a) indicate that model averaging significantly improves the accuracy
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(a) Classical sketch with model averaging.
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(b) Hessian sketch with model averaging.

Figure 4: An empirical study of model averaging from the optimization perspective. The
x-axis is g, i.e., the number of models that are averaged. In 4(a), the y-axis is the
ratio (log-scale) defined in (10). In 4(b), the y-axis is the ratio (log-scale) defined
in (11). Here γ is the regularization parameter and ξ is the standard deviation
of the Gaussian noise.

as measured by the objective function value. For the three random projection methods,
the growth rate of this ratio is almost linear in g. In Figure 4(a), we observe that the
regularization parameter γ affects the ratio (10). The ratio grows faster when γ = 10−12

than when γ = 10−6. This phenomenon is not explained by our theory.

Theorem 8 shows that for large sketch size s, e.g., Gaussian projection with s = Õ
(
d
ε

)
,

f(wh)− f(w?) ≤ β2
(
ε
g + ε2

)(
‖y‖22
n − f(w?)

)
,

where β =
‖X‖22
‖X‖22+nγ

≤ 1. In Figure 4(b), we plot the ratio

f(wh
[1]

)−f(w?)

f(wh
[g]

)−f(w?)
(11)

against g. Rapid growth of this ratio indicates that model averaging is highly effective. Our
empirical results indicate that the growth rate of this ratio is moderately rapid for very
small g and very slow for large g.

4.5 Model Averaging: Statistical Perspective

We empirically study model averaging from the statistical perspective. We calculate the
bias and variance bias(w?), var(w?) of the optimal MRR solution according to Theorem 4
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Figure 5: An empirical study of the variance of classical sketch with model averaging. The
x-axis is g, i.e., the number of models that are averaged. In 5(a), the y-axis is
the variance var(wc

[g]) (log scale) defined in Theorem 9. In 5(b), the y-axis is the

ratio
var(wc

[1]
)

var(wc
[g]

) . Here γ is the regularization parameter and s is the sketch size.
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Figure 6: An empirical study of the bias of Hessian sketch with model averaging. The x-axis
is g, the number of models being averaged; the y-axis is the ratio (12).

and the bias and variance bias(wc
[g]), var(w

c
[g]) and bias(wh

[g]), var(w
h
[g]) of, respectively, the

model averaged classical sketch solution and the model averaged Hessian sketch solution
according to Theorem 9.
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4.5.1 Classical Sketch

Theorem 10 indicates that for large enough s, e.g., Gaussian projection with s = Õ
(
d
ε2

)
,

with high probability

bias(wc
[g]

)

bias(w?) ≤ 1 + ε and
var(wc

[g]
)

var(w?) ≤
n
s

(√
1+ε
h + ε

)2
,

where h = min{g, Θ(ns )}. This result implies that model averaging decreases the variance
of classical sketch without significantly changing the bias. We conduct experiments to verify
this point.

In Figure 5(a) we plot the variance var(wc
[g]) against g; the variance of the optimal

solution w? is depicted for comparison. Clearly, the variance drops as g grows. In particular,
when s is big (s = 5, 000) and g exceeds n

s (= 100,000
5,000 = 20), var(wc

[g]) can be even lower

than var(w?).
To more clearly decrease the impact of model averaging on the variance, in Figure 5(b)

we plot the ratio
var(wc

[1]
)

var(wc
[g]

) against g. According to Theorem 10, this ratio grows linearly in

g when s is at least Õ(dg), and otherwise is sublinear in g. This claim is verified by the
empirical results in Figure 5(b).

When bias(wc
[g]) is plotted as a function of g, the curves are almost horizontal, indicating

that, as expected, the bias is insensitive to the number of models g. We do not show such
plots because these nearly horizontal curves are not interesting.

4.5.2 Hessian Sketch

Theorem 11 indicates that for large enough s, e.g., Gaussian projection with s = Õ
(
d
ε2

)
,

the inequalities

bias(wh
[g]

)

bias(w?) ≤ 1 + ε+
(

ε√
g + ε2

)
‖X‖22
nγ and

var(wh
[g]

)

var(w?) ≤ 1 + ε

hold with high probability. That is, model averaging improves the bias without affecting
the variance. The bound

bias(wh
[g]

)−bias(w?)

bias(w?) ≤ ε+
(

ε√
g + ε2

)
‖X‖22
nγ

indicates that if nγ is much smaller than ‖X‖22 and ε ≤ 1√
g , or equivalently, s is at least

Õ(dg), then the ratio is proportional to ε√
g .

To verify Theorem 11, we set γ very small—γ = 10−12—and vary s and g. In Figure 6
we plot the ratio

bias(wh
[1])−bias(w

?)

bias(wh
[g]

)−bias(w?) , (12)

by fixing γ = 10−12 and varying s and g. The theory indicates that for large sketch size
s = Õ(dg2), this ratio should grow nearly linearly in g. Figure 6 shows that only for large
s and very small g, the growth is near linear in g; this verifies our theory.

When we similarly plot var
(
wh

[g]

)
against g, we observe that var

(
wh

[g]

)
remains nearly

unaffected as g grows from 1 to 50. Since the curves of the variance against g are almost
horizontal lines, we do not show this plot in the paper.
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Figure 7: Prediction performance of classical sketch with and without model averaging on
the Year Prediction data set. The x-axis is g, the number of data partitions, and
the y-axis is the mean squared error (MSE) on the test set.

5. Model Averaging Experiments on Real-World Data

In Section 1 we mentioned that in the distributed setting where the feature-response
pairs (x1,y1), · · · , (xn,yn) ∈ Rd×m are randomly and uniformly partitioned across g
machines,5 classical sketch with model averaging requires only one round of communication,
and is therefore a communication-efficient algorithm that can be used to: (1) obtain an
approximate solution of the MRR problem with risk comparable to a batch solution, and
(2) obtain a low-precision solution of the MRR optimization problem that can be used as
an initializer for more communication-intensive optimization algorithms. In this section, we
demonstrate both applications.

We use the Million Song Year Prediction data set, which has 463, 715 training samples
and 51, 630 test samples with 90 features and one response. We normalize the data by
shifting the responses to have zero mean and scaling the range of each feature to [−1, 1]. We
randomly partition the training data into g parts, which amounts to uniform row selection
with sketch size s = n

g .

5.1 Prediction Error

We tested the prediction performance of sketched ridge regression by implementing classical
sketch with model averaging in PySpark (Zaharia et al., 2010).6 We ran our experiments
using PySpark in local mode; the experiments proceeded in three steps: (1) use five-fold
cross-validation to determine the regularization parameter γ; (2) learn the model w using
the selected γ; and (3) use w to predict on the test set and record the mean squared
errors (MSEs). These steps map cleanly onto the Map-Reduce programming model used
by PySpark.

5. If the samples are i.i.d., then any deterministic partition is essentially a uniformly randomly distributed
partition. Otherwise, we can invoke a Shuffle operation, which is supported by systems such as Apache
Spark (Zaharia et al., 2010), to make the partitioning uniformly randomly distributed.

6. The code is available at https://github.com/wangshusen/SketchedRidgeRegression.git
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Figure 8: Optimization performance of classical sketch with and without model averaging.
The x-axis is g, the number of data partitions, and the y-axis is the ratio ‖w−w?‖2

‖w?‖2 .

In Figure 7, we plot the test MSE against g = n
s . As g grows, the sketch size s = n

g
decreases, so the performance of classical sketch deteriorates. However classical sketch with
model averaging always has test MSE comparable to the optimal solution.

5.2 Optimization Error

We mentioned earlier that classical sketch with or without model averaging can be used
to initialize optimization algorithms for solving MRR problems. If w is initialized with
zero-mean random variables or deterministically with zeros, then E

[
‖w−w?‖2/‖w?‖2

]
≥ 1.

Any w with the above ratio substantially smaller than 1 provides a better initialization. We
implemented classical sketch with and without model averaging in Python and calculated
the above ratio on the training set of the Year Prediction data set; to estimate the
expectation, we repeated the procedure 100 times and report the average of the ratios.

In Figure 8, we plot the average of the ratio ‖w−w?‖2
‖w?‖2 against g for different settings of

the regularization parameter γ. Clearly, classical sketch does not give a good initialization
unless g is small (equivalently, the sketch size s = n

g is large). In contrast, the averaged
solution is always close to w?.

6. Sketch of Proof

In this section, we outline the proofs of our main results. The complete details are
provided in the appendix. Section 6.1 recaps several relevant properties of matrix sketching.
Section 6.2 establishes certain properties of averages of sketches; these results are used
to analyze the application of model averaging to the MRR problem. Sections 6.3 to 6.6
provide key structural results on sketched solutions to the MRR problem constructed with
or without model averaging.

Our main results in Section 3 (Theorems 1, 2, 5, 6, 7, 8, 10, and 11) follow directly from
the relevant properties of matrix sketching and the structural results for solutions to the
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sketched MRR problem. Table 4 summarizes the dependency relationships among these
theorems. For example, Theorem 1, which studies classical sketching from the optimization
perspective, is one of our main theorems and is proven using Theorems 12 and 15.

Table 4: An overview of our results and their dependency relationships.
Main Theorems Solution Perspective Prerequisites

Theorem 1 classical optimization Theorems 12 and 15
Theorem 2 Hessian optimization Theorems 12 and 16
Theorem 5 classical statistical Theorems 12, 13, 17, 18
Theorem 6 Hessian statistical Theorems 12 and 19
Theorem 7 classical, averaging optimization Theorems 14 and 20
Theorem 8 Hessian, averaging optimization Theorems 14 and 21
Theorem 10 classical, averaging statistical Theorems 14 and 22
Theorem 11 Hessian, averaging statistical Theorems 14 and 23

6.1 Properties of Matrix Sketching

Our analysis of the performance of solutions to the sketched MRR problem draws heavily
on the three key properties defined in Assumption 1. Theorem 12 establishes that the six
sketching methods considered in this paper indeed enjoy the three key properties under
certain conditions. Finally, Theorem 13 establishes the lower bounds of ‖S‖22 that are used
to prove the lower bounds on the variance of sketched MRR solutions in Theorem 5.

Assumption 1 Let η, ε ∈ (0, 1) be fixed parameters. Let B be any fixed matrix of conformal
shape, ρ = rank(X), and U ∈ Rn×ρ be an orthonormal basis for the column span of X. Let
S ∈ Rn×s be a sketching matrix, where s depends on η and/or ε. Throughout this paper, we
assume that S satisfies the following properties with a probability that depends on s:

1.1
∥∥UTSSTU− Iρ

∥∥
2
≤ η (Subspace Embedding Property);

1.2
∥∥UTSSTB−UTB

∥∥2
F
≤ ε‖B‖2F (Matrix Multiplication Property);

1.3 When s < n, ‖S‖22 ≤ θn
s for some constant θ (Bounded Spectral Norm Property).

The subspace embedding property requires that sketching preserves the inner products
between the columns of a matrix with orthonormal columns. Equivalently, it ensures that
the singular values of any sketched column-orthonormal matrix are all close to one. The
subspace embedding property implies that, in particular, the squared norm of Sx is close
to that of x for any n-dimensional vector in a fixed ρ-dimensional subspace. A dimension
counting argument suggests that since Sx is an s-dimensional vector, its length must be
scaled by a factor of

√
n
s to ensure that this consequence of the subspace embedding property

holds. The bounded spectral norm property requires that the spectral norm of S is not much
larger than this rescaling factor of

√
n
s .

Remark 2 The first two assumptions were identified in (Mahoney, 2011) and are the
relevant structural conditions that allow strong results from the optimization perspective.
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Table 5: The two middle columns provide an upper bound on the sketch size s needed to
satisfy the subspace embedding property and the matrix multiplication property,
respectively, under the different sketching modalities considered; the right column
lists the parameter θ with which the bounded spectral norm property holds. These
properties hold with constant probability for the indicated values of s. Here τ is
defined in (5) and reflects the quality of the approximation of the leverage scores
of U; µ is the row coherence of U. For Gaussian projection and CountSketch, the
small-o notation is a consequence of s = o(n).

Sketching Subspace Embedding Matrix Multiplication Spectral Norm

Leverage s = O
(
τρ
η2

log ρ
δ1

)
s = O

(
τρ
εδ2

)
θ =∞

Uniform s = O
(
µρ
η2

log ρ
δ1

)
s = O

(
µρ
εδ2

)
θ = 1

Shrinked Leverage s = O
(
τρ
η2

log ρ
δ1

)
s = O

(
τρ
εδ2

)
θ = 2

SRHT s = O
(
ρ+logn
η2

log ρ
δ1

)
s = O

(
ρ+logn
εδ2

)
θ = 1

Gaussian Projection s = O
( ρ+log(1/δ1)

η2

)
s = O

(
ρ
εδ2

)
θ = 1 + o(1) w.h.p.

CountSketch s = O
(
ρ2

δ1η2

)
s = O

(
ρ
εδ2

)
θ = 1 + o(1) w.h.p.

The third assumption is new, but Ma et al. (2015); Raskutti and Mahoney (2016)
demonstrated that some sort of additional condition is necessary to obtain strong results
from the statistical perspective.

Remark 3 We note that UTU = Iρ, and thus Assumption 1.1 can be expressed in the
form of an approximate matrix multiplication bound (Drineas et al., 2006a). We call it
the Subspace Embedding Property since, as first highlighted in Drineas et al. (2006b), this
subspace embedding property is the key result necessary to obtain high-quality sketching
algorithms for regression and related problems.

Theorem 12 shows that the six sketching methods satisfy the three properties when s is
sufficiently large. In particular, Theorem 12 shows that for all the sketching methods except
leverage score sampling,7 ‖S‖22 has nontrivial upper bound. This is why Theorems 5 and 10
do not apply to leverage score sampling. This fact can also be viewed as a motivation to
use shrinked leverage score sampling. We prove Theorem 12 in Appendix A.

Theorem 12 Fix failure probability δ and error parameters η and ε; set the sketch size s
as Table 5. Assumption 1.1 is satisfied with probability at least 1 − δ1. Assumption 1.2 is
satisfied with probability at least 1 − δ2. Assumption 1.3 is satisfied either surely or with
high probability (w.h.p.); the parameter θ is indicated in Table 5.

Theorem 13 establishes lower bounds on ‖S‖22, and will be applied to prove the lower
bound on the variance of the classical sketch. From Table 6 we see that the lower bound for

7. If one leverage score approaches zero, then the corresponding sampling probability pi goes to zero. By
the definition of S, the scale factor 1√

spi
goes to infinity, which makes ‖S‖22 unbounded. The shinked

leverage score sampling avoids this problem and is thus a better choice than the leverage score sampling.
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(shrinked) leverage score sampling is not interesting, because µ can be very large. This is
why Theorem 5 does not provide a lower bound for shrinked leverage score sampling. We
prove Theorem 13 in Appendix A.

Table 6: Lower bounds on ϑ for the sketching modalities (ϑ is defined in Theorem 13). The
shrinked leverage score sampling is performed using the row leverage scores of a
matrix X ∈ Rn×d, and µ is the row coherence of X.

Uniform ϑ = 1
Leverage ϑ ≥ 1

µ

Shrinked Leverage ϑ ≥ 2
1+µ

SRHT ϑ = 1
Gaussian Projection ϑ ≥ 1− o(1) w.h.p.

CountSketch ϑ ≥ 1− o(1) w.h.p.

Theorem 13 (Semidefinite Lower Bound on the Sketching Matrix) When s < n,
STS � ϑn

s Is holds either surely or with high probability (w.h.p.), where Table 6 provides the
applicable ϑ for each sketching method.

Remark 4 Let p1, · · · , pn be an arbitrary set of sampling probabilities. By the definition
of the associated sampling matrix S ∈ Rn×s, the non-zero entries of S can be any of 1√

spi
,

for i ∈ [n].
For leverage score sampling, since the smallest sampling probability can be zero or close,

and the largest sampling probability can be close to one, ‖S‖22 has no nontrivial upper or
lower bound.8 It is because mini pi can be close to zero and maxi pi can be large (close to
one).

For shrinked leverage score sampling, because mini pi is at least 1
2n , ‖S‖22 has a nontrivial

upper bound; but as in the case of leverage score sampling, since maxi pi can be large, there
is no nontrivial lower bound on ‖S‖22.

6.2 Matrix Sketching with Averaging

Assumptions 1.1 and 1.2 imply that sketching can be used to approximate certain matrix
products, but what happens if we independently draw g sketches, use them to approximate
the same matrix product, and then average the g results? Intuitively, averaging should
lower the variance of the approximation without affecting its bias, and thus provide a
better approximation of the true product.

To justify this intuition formally, let S1, · · · ,Sg ∈ Rn×s be sketching matrices and A
and B be fixed conformal matrices. Then evidently

1

g

g∑
i=1

ATSiS
T
i B = ATSSTB,

8. In our application, nontrivial bound means ‖S‖22 is of order n
s

.
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where S = 1√
g [S1, · · · ,Sg] ∈ Rn×gs can be thought of as a sketching matrix formed by

concatenating the g smaller sketching matrices. If S1, · · · ,Sg are all instance of column
selection, SRHT, or Gaussian projection sketching matrices, then S is a larger instance of
the same type of sketching matrix.9

To analyze the effect of model averaging on the solution to the sketched MRR problem,
we make the following assumptions on the concatenated sketch matrix. Assumption 2.1 is
the subspace embedding property, Assumption 2.2 is the matrix multiplication property,
and Assumption 2.3 is the bounded spectral norm property.

Assumption 2 Let η, ε ∈ (0, 1) be fixed parameters. Let B be any fixed matrix of proper
size, ρ = rank(X), and U ∈ Rn×ρ be an orthonormal basis for the column span of X. Let
S1, · · · ,Sg ∈ Rn×s be sketching matrices and S = 1√

g [S1, · · · ,Sg] ∈ Rn×gs; here s depends

on η and/or ε. Throughout this paper we assume that S and the Si satisfy the following
properties with a probability that depends on g and s:

2.1
∥∥UTSiS

T
i U− Iρ

∥∥
2
≤ η for all i ∈ [g] and

∥∥UTSSTU− Iρ
∥∥
2
≤ η√

g ;

2.2
(
1
g

∑g
i=1

∥∥UTSiS
T
i B−UTB

∥∥
F

)2 ≤ ε‖B‖2F and
∥∥UTSSTB−UTB

∥∥2
F
≤ ε

g‖B‖
2
F ;

2.3 For some constant θ, ‖Si‖22 ≤ θn
s for all i ∈ [g], and ‖S‖22 ≤ θn

gs for gs < n.

Except in the case of leverage score sampling, when gs is comparable to or larger than n,
‖S‖22 = Θ(1).

Theorem 14 establishes that random column selection, SRHT, and Gaussian projection
matrices satisfy Assumptions 2.1, 2.2, and 2.3. We prove Theorem 14 in Appendix A.

Theorem 14 Let S1, · · · ,Sg ∈ Rn×s be independent and identically distributed random
sketching matrices that are either column selection, SRHT, or Gaussian projection matrices.
Fix a failure probability δ and error parameters η and ε, then set the sketch size s as Table 5.

Assumption 2.1 holds with probability at least 1− (g + 1)δ1. Assumption 2.2 holds with
probability at least 1−2δ2. Assumption 2.3 is satisfied either surely or with high probability,
with the parameter θ specified in Table 5.

In Theorem 12, Assumption 1.1 fails with probability at most δ1. In contrast, in
Theorem 14, the counterpart assumption fails with probability at most (g+ 1)δ1. However,
this makes little difference in practice, because the dependence of s on δ1 is logarithmic, so
δ1 can be set very small (recall Table 5) without increasing s significantly.

Remark 5 We do not know whether CountSketch enjoys the properties in Assumption 2.
There are two difficulties in establishing this using the same route as is employed in our proof
of Theorem 12 for other sketching methods. First, the concatenation of multiple CountSketch
matrices is not a CountSketch matrix. Second, the probability that a CountSketch matrix
does not have the subspace embedding property is constant, rather than exponentially small.

9. CountSketch sketching matrices does not have this property. If Si ∈ Rn×s is a CountSketch matrix, then
it has only one non-zero entry in each row. In contrast, S ∈ Rn×gs has g non-zero entries in each row.
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6.3 Sketched MRR: Optimization Perspective

The randomness in the performance of the classical and Hessian sketch is entirely due
to the choice of random sketching matrix. We now assume that the randomly sampled
sketching matrices are “nice” in that they satisfy the assumptions just introduced, and
state deterministic results on the optimization performance of the classical and Hessian
sketches.

Theorem 15 holds under the subspace embedding property and the matrix multiplication
property (Assumptions 1.1 and 1.2), and quantifies the suboptimality of the classical sketch.
We prove this result in Appendix B.

Theorem 15 (Classical Sketch) Let Assumptions 1.1 and 1.2 hold for the sketching

matrix S ∈ Rn×s. Let η and ε be defined in Assumption 1, and let α = 2max{ε,η2}
1−η and

β =
‖X‖22
‖X‖22+nγ

, then

f(Wc)− f(W?) ≤ αβf(W?).

Theorem 16 holds under the subspace embedding property (Assumption 1.1), and
quantifies the suboptimality of the Hessian sketch. We prove this result in Appendix B.

Theorem 16 (Hessian Sketch) Let Assumption 1.1 hold for the sketching matrix S ∈
Rn×s. Let η be defined in Assumption 1 and β =

‖X‖22
‖X‖22+nγ

, then

f(Wh)− f(W?) ≤ η2β2

(1− η)2

(
‖Y‖2F
n
− f(W?)

)
.

6.4 Sketched MRR: Statistical Perspective

Similarly, we assume that the randomly sampled sketching matrices are nice, and state
deterministic results on the bias and variance of the classical and Hessian sketches.

Theorem 17 holds under the subspace embedding property (Assumption 1.1) and the
bounded spectral norm property (Assumption 1.3), and bounds the bias and variance of the
classical sketch. Specifically, it shows that the bias of the classical sketch is close to that
of the optimal solution, but that the variance may be much larger. We prove this result in
Appendix C.

Theorem 17 (Classical Sketch) Let η and θ be defined in Assumption 1. Under
Assumption 1.1, it holds that

1
1+η ≤

bias(Wc)
bias(W?) ≤

1
1−η .

Further assume s ≤ n; under Assumptions 1.1 and 1.3, it holds that

var(Wc)
var(W?) ≤

(1+η)
(1−η)2

θn
s .

Theorem 18 establishes a lower bound on the variance of the classical sketch. We prove
this result in Appendix C.
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Theorem 18 (Lower Bound on the Variance) Under Assumption 1.1 and the addi-
tional assumption that STS � ϑn

s Is, it holds that

var(Wc)
var(W?) ≥

1−η
(1+η)2

ϑn
s .

Theorem 19 holds under the subspace embedding property (Assumption 1.1), and
quantifies the bias and variance of the Hessian sketch. We prove this result in Appendix C.

Theorem 19 (Hessian Sketch) Let η be defined in Assumption 1, take ρ = rank(X),
and let σ1 ≥ · · · ≥ σρ be the singular values of X. Under Assumption 1.1, it holds that

bias(Wh)
bias(W?) ≤

1
1−η

(
1 +

ησ2
1

nγ

)
,

1
1+η ≤

var(Wh)
var(W?) ≤

1
1−η .

Further assume that σ2ρ ≥
nγ
η . Then

bias(Wh)
bias(W?) ≥

1
1+η

(
ησ2
ρ

nγ − 1
)
.

6.5 Model Averaging: Optimization Perspective

Theorem 20 holds under the subspace embedding property (Assumption 2.1) and the matrix
multiplication property (Assumption 2.2). We prove this result in Appendix D.

Theorem 20 (Classical Sketch with Model Averaging) Let η and ε be defined in

Assumption 2, and let α = 2
(

1√
g + 2βη

)2
max

{
ε, η2

}
and β =

‖X‖22
‖X‖22+nγ

≤ 1. Under

Assumption 2.1 and 2.2, we have that

f(Wc)− f(W?) ≤ αβf(W?).

Theorem 21 holds under the subspace embedding property (Assumption 2.1), and is
proven in Appendix D.

Theorem 21 (Hessian Sketch with Model Averaging) Let η be defined in Assump-

tion 2, and let α =
( η√

g + η2

1−η
)

and β =
‖X‖22
‖X‖22+nγ

≤ 1. Under Assumption 2.1, we have

that

f(Wh)− f(W?) ≤ α2β2
(

1
n‖Y‖

2
F − f(W?)

)
.

6.6 Model Averaging: Statistical Perspective

Theorem 22 requires the subspace embedding property (Assumption 2.1). In addition, to
bound the variance, the spectral norms of S1, · · · ,Sg and S = 1√

g [S1, · · · ,Sg] must be

bounded (Assumption 2.3). This result shows that model averaging decreases the variance
of the classical sketch without increasing its bias. We prove this result in Appendix E.
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Theorem 22 (Classical Sketch with Model Averaging) Under Assumption 2.1, it
holds that

bias(Wc)

bias(W?)
≤ 1

1− η
.

Under Assumptions 2.1 and 2.3, it holds that

var(Wc)

var(W?)
≤ θn

s

(√
1+η/

√
g√

h
+ η
√
1+η

1−η

)2

.

Here η and θ are defined in Assumption 2 and h = min{g, ns
(
1− o(1)

)
},

Theorem 23 requires the subspace embedding property (Assumption 2.1), and shows that
model averaging decreases the bias of the Hessian sketch without increasing its variance.
We prove this result in Appendix E.

Theorem 23 (Hessian Sketch with Model Averaging) Under Assumption 2.1, it holds
that:

bias(Wh)

bias(W?)
≤ 1

1− η
+
( η
√
g

+
η2

1− η

)‖X‖22
nγ

,

var(Wh)

var(W?)
≤ 1

1− η
.

Here η is defined in Assumption 2.

7. Conclusions

We studied sketched matrix ridge regression (MRR) from the optimization and statistical
perspectives. Using classical sketch, by taking a large enough sketch, one can obtain an
ε-accurate approximate solution. Counterintuitively and in contrast to classical sketch,
the relative error of Hessian sketch increases as the responses Y are better approximated
by linear combinations of the columns of X. Both classical and Hessian sketches can have
statistical risks that are worse than the risk of the optimal solution by an order of magnitude.

We proposed the use of model averaging to attain better optimization and statistical
properties. We have shown that model averaging leads to substantial improvements in the
theoretical error bounds, suggesting applications in distributed optimization and machine
learning. We also empirically verified its practical benefits.

Our fixed-design statistical analysis has limitations. We have shown that the classical
sketch and Hessian sketch can significantly increase the in-sample statistical risk, which
implies large training error, and that model averaging can alleviate such problems. However,
our statistical results are not directly applicable to an unseen test sample. We conjecture
that the generalization error can be bounded by following the random design analysis of
Hsu et al. (2014), which is left as future work.
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Appendix A. Properties of Matrix Sketching: Proofs

In Section A.1 we prove Theorem 12. In Section A.2, we prove Theorem 13. In Section A.3
we prove Theorem 14.

A.1 Proof of Theorem 12

We prove that the six sketching methods considered in this paper satisfy the three key
properties. In Section A.1.1 we show the six sketching methods satisfy Assumptions 1.1
and 1.2. In section A.1.2 we show the six sketching methods satisfy Assumption 1.3.

A.1.1 Proof of Assumptions 1.1 and 1.2

For uniform sampling, leverage score sampling, Gaussian projection, SRHT, and CountS-
ketch, the subspace embedding property and matrix multiplication property have been
established by the previous works (Drineas et al., 2008, 2011; Meng and Mahoney, 2013;
Nelson and Nguyên, 2013; Tropp, 2011; Woodruff, 2014). See also (Wang et al., 2016b) for
a summary.

In the following we prove only that shrinked leverage score sampling satisfies
assumptions 1.1 and 1.2. We cite the following lemma from (Wang et al., 2016a); this
lemma was first established in the works (Drineas et al., 2008; Gittens, 2011; Woodruff,
2014).

Lemma 24 (Wang et al. (2016a)) Let U ∈ Rn×ρ be a fixed matrix with orthonormal
columns. Let the column selection matrix S ∈ Rn×s sample s columns according to
probabilities p1, p2, · · · , pn. Assume α ≥ ρ and

max
i∈[n]

‖ui:‖22
pi

≤ α.

When s ≥ α6+2η
3η2

log(ρ/δ1), it holds that

P
{∥∥Iρ −UTSSTU

∥∥
2
≥ η

}
≤ δ1.

When s ≥ α
εδ2

, it holds that

E
∥∥UB−UTSSTB

∥∥2
F
≤ δ2ε‖B‖2F ;

as a consequence of Markov’s inequality, it holds that

P
{∥∥UB−UTSSTB

∥∥2
F
≥ ε‖B‖2F

}
≤ δ2.

Here the expectation and probability are with respect to the randomness in S.
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Now we apply the above lemma to analyze shrinked leverage score sampling. Given
the approximate shrinked leverage scores defined in (5), the sampling probabilities satisfy

pi = 1
2

(
1
n + l̃i∑n

q=1 l̃q

)
≥ ‖ui:‖22

2τρ .

Here l̃i and τ are defined in (5). Thus for all i ∈ [n],
‖ui:‖22
pi
≤ 2τρ. We can then apply

Lemma 24 to show that Assumption 1.1 holds with probability at least 1 − δ1 when s ≥
2τρ6+2η

3η2
log ρ

δ1
and that Assumption 1.2 holds with probability at least 1−δ2 when s ≥ 2τρ

εδ2
.

A.1.2 Proof of Assumption 1.3

For uniform sampling (without replacement) and SRHT, when s < n, it is easy to show
that STS = n

s Is, and thus ‖S‖22 = n
s . Let {psi} and {pui } be the sampling probabilites of

shrinked leverage score sampling and uniform sampling, respectively. Obviously psi ≥ 1
2p

u
i .

Thus for shrinked leverage score sampling, ‖S‖22 ≤ 2n
s .

The greatest singular value of a standard Gaussian matrix G ∈ Rn×s is at most
√
n +√

s+ t with probability at least 1− 2e−t
2/2 (Vershynin, 2012). Thus a Gaussian projection

matrix S satisfies

‖S‖22 =
1

s
‖G‖22 ≤

(
√
n+
√
s+ t)2

s

with probability at least 1− 2e−t
2/2.

If S is the CountSketch matrix, then each row of S has exactly one nonzero entry, either
1 or −1. Because the columns of S are orthogonal to each other, it holds that

‖S‖22 = max
i∈[s]
‖s:i‖22 = max

i∈[s]
nnz(s:i).

The problem of bounding nnz(s:i) is equivalent to assigning n balls into s bins uniformly at
random and bounding the number of balls in the bins. Patrascu and Thorup (2012) showed
that for s � n, the maximal number of balls in any bin is at most n/s + O

(√
n/s logc n

)
with probability at least 1− 1

n , where c = O(1). Thus

‖S‖22 = max
i∈[s]

nnz(s:i) ≤
n

s
+O

(√
n logc n√

s

)
=

n

s

(
1 + o(1)

)
holds with probability at least 1− 1

n .

A.2 Proof of Theorem 13

For uniform sampling (without replacement) and SRHT, it holds that STS = n
s Is.

For non-uniform sampling with probabilities p1, · · · , pn, (with
∑

i pi = 1), let pmax =
maxi pi. The smallest entry in S is 1√

spmax
, and thus STS � 1

spmax
Is. For leverage score

sampling, pmax = µ
n . For shrinked leverage score sampling, pmax = 1+µ

2n . The lower bound
on ‖S‖22 is thus established.

The smallest singular value of any n× s standard Gaussian matrix G is at least
√
n−√

s − t with probability at least 1 − 2e−t
2/2 (Vershynin, 2012). Thus if S = 1√

s
G is the
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Gaussian projection matrix, the smallest eigenvalue of STS is (1− o(1))ns with probability
very close to one.

If S is the CountSketch matrix, then each row of S has exactly one nonzero entry, either
1 or −1. Because the columns of S are orthogonal to each other, it holds that

σ2min(S) = min
i∈[s]
‖s:i‖22 = min

i∈[s]
nnz(s:i).

The problem of bounding nnz(s:i) is equivalent to assigning n balls into s bins uniformly at
random and bounding the number of balls in the bins. Standard concentration arguments
imply that each bin has at least n

s (1− o(1)) balls w.h.p., and hence σ2min(S) ≥ n
s (1− o(1))

w.h.p.

A.3 Proof of Theorem 14

Assumption 2.1. By Theorem 12 and the union bound, we have that
∥∥UTSiS

T
i −Iρ

∥∥
2
≤ η

hold simultaneously for all i ∈ [g] with probability at least 1 − gδ1. Because S ∈ Rn×gs is
the same type of sketching matrix, it follows from Theorem 12 that

∥∥UTSSTU−Iρ
∥∥
2
≤ η√

g

holds with probability at least 1− δ1.

Assumption 2.2. By the same proof of Theorem 12, we can easily show that

E
∥∥UTB−UTSiS

T
i B
∥∥2
F
≤ δ2ε ‖B‖2F ,

where B is any fixed matrix and the expectation is taken w.r.t. S. It follows from Jensen’s
inequality that(

E
∥∥UTSiS

T
i B−UTB

∥∥
F

)2
≤ E

∥∥UTSiS
T
i B−UTB

∥∥2
F
≤ δ2ε

∥∥B∥∥2
F
.

It follows that

1

g

g∑
i=1

E
∥∥UTSiS

T
i B−UTB

∥∥
F
≤
√
δ2ε
∥∥B∥∥

F
,

and thus

(1

g

g∑
i=1

E
∥∥UTSiS

T
i B−UTB

∥∥
F

)2
≤ δ2ε

∥∥B∥∥2
F
.

It follows from Markov’s bound that

P
{(1

g

g∑
i=1

∥∥UTSiS
T
i B−UTB

∥∥
F

)2
≤ ε

∥∥B∥∥2
F

}
≥ 1− δ2.

Because S ∈ Rn×gs is the same type of sketching matrix, it follows from Theorem 12 that∥∥UTSSTB−UTB
∥∥2
F
≤ ε

g‖B‖
2
F holds with probability at least 1− δ2.
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Assumption 2.3. Theorem 12 shows that ‖Si‖22 can be bounded either surely or w.h.p.
(assuming n is large enough). Because g � n, ‖Si‖22 can be bounded simultaneously for all
i ∈ [g] either surely or w.h.p.

Suppose sg < n. Because S ∈ Rn×gs is the same type of sketching matrix, it follows
from Theorem 12 that ‖S‖22 ≤ θn

gs holds either surely or w.h.p.

Suppose sg ≥ n. It is not hard to show that uniform sampling, shrinked leverage score
sampling, and SRHT satisfy ‖S‖2 = Θ(1) w.h.p. Previously we have shown that a random
Gaussian projection matrix S ∈ Rn×sg satisfies

‖S‖22 ≤
(
1 + o(1)

) (
√
n+
√
gs)2

gs

w.h.p. Hence for sg ≥ n, ‖S‖22 ≤ 4 + o(1) w.h.p.

Appendix B. Sketched MRR from the Optimization Perspective: Proofs

In Section B.1 we establish a key lemma. In Section B.2 we prove Theorem 15. In Section B.3
we prove Theorem 16.

B.1 Key Lemma

Recall that the objective function of the matrix ridge regression (MRR) problem is

f(W) ,
1

n

∥∥XW −Y
∥∥2
F

+ γ‖W‖2F .

The optimal solution is W? = argminW f(W). The following is the key lemma for
understanding the difference between the objective value at W? and any arbitrary W.

Lemma 25 For any matrix W and any nonsingular matrix M of proper size, it holds that

f(W) =
1

n
tr
[
YTY − (2W? −W)T (XTX + nγIn)W

]
,

f(W?) =
1

n

[∥∥Y⊥∥∥2
F

+ nγ
∥∥(Σ2 + nγIρ

)−1/2
UTY

∥∥2
F

]
,

f(W)− f(W?) =
1

n

∥∥∥(XTX + nγId)
1/2(W −W?)

∥∥∥2
F
,∥∥∥M−1(W −W?)

∥∥∥2
F
≤ σ−2min

[
(XTX + nγId)

1/2M
] ∥∥∥(XTX + nγId)

1/2(W −W?)
∥∥∥2
F
.

Here X = UΣVT is the SVD and Y⊥ = Y −XX†Y.

Proof Let U be the left singular vectors of X. The objective value f(W) can be written
as

f(W) =
1

n

∥∥XW −Y
∥∥2
F

+ γ
∥∥W∥∥2

F

=
1

n
tr
[
YTY − (2W? −W)T (XTX + nγIn)W

]
,
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so

f(W?) =
1

n
tr
[
YT
(
In −X(XTX + nγId)

−1XT
)
Y
]

=
1

n
tr
[
YT
(
In −U(Iρ + nγΣ−2)−1UT

)
Y
]

=
1

n
tr
[
YTY −YTUUTY + YTUUTY −YTU(Iρ + nγΣ−2)−1UTY

]
=

1

n

{
tr
[
YT (In −UUT )Y

]
+ nγ · tr

[
YTU

(
Σ2 + nγIρ

)−1
UTY

]}
=

1

n

[∥∥Y⊥∥∥2
F

+ nγ
∥∥(Σ2 + nγIρ

)−1/2
UTY

∥∥2
F

]
.

The difference in the objective values is therefore

f(W)− f(W?) =
1

n
tr
[
(W −W?)T (XTX + nγId)(W −W?)

]
=

1

n

∥∥∥(XTX + nγId)
1/2(W −W?)

∥∥∥2
F
.

Because σmin(A)‖B‖F ≤ ‖AB‖F holds for any nonsingular A and any B, it holds for any
nonsingular matrix M that

σ2
min

[
(XTX + nγId)

1/2M
]∥∥∥M−1(W −W?)

∥∥∥2
F
≤

∥∥∥(XTX + nγId)
1/2MM−1(W −W?)

∥∥∥2
F

=
∥∥∥(XTX + nγId)

1/2(W −W?)
∥∥∥2
F
.

The last claim in the lemma follows from the above inequality.

B.2 Proof of Theorem 15

Proof Let ρ = rank(X), U ∈ Rn×ρ be the left singular vectors of X, and Y⊥ = Y −
XX†Y = Y −UUTY. It follows from the definition of W? and Wc that

Wc −W? = (XTSSTX + nγId)
−1XTSSTY − (XTX + nγId)

−1XTY.

It follows that

(XTSSTX + nγId)(W
c −W?)

= XTSSTY⊥ + XTSSTXX†Y − (XTSSTX + nγId)(X
TX + nγId)

−1XTY

= XTSSTY⊥ − nγX†Y + (XTSSTX + nγId)
[
X† − (XTX + nγId)

−1XT
]
Y

= XTSSTY⊥ − nγX†Y + nγ(XTSSTX + nγId)(X
TX + nγId)

−1X†Y

= XTSSTY⊥ + nγ(XTSSTX−XTX)(XTX + nγId)
−1X†Y.

It follows that

(XTX + nγId)
−1/2(XTSSTX + nγId)(W

c −W?) = A + B, (13)
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where

A =
[
(XTX + nγId)

1/2
]†

XTSSTY⊥ = V(Σ2 + nγIρ)
−1/2ΣUSSTY⊥,

B = nγ
[
(XTX + nγId)

1/2
]†

(XTSSTX−XTX)(XTX + nγId)
†X†Y

= nγV(Σ2 + nγIρ)
−1/2Σ(UTSSTU− Iρ)Σ(Σ2 + nγIρ)

−1Σ−1UTY

= nγVΣ(Σ2 + nγIρ)
−1/2(UTSSTU− Iρ)(Σ

2 + nγIρ)
−1UTY.

It follows from (13) that

(XTX + nγId)
1/2
(
Wc −W?

)
=
[
(XTX + nγId)

−1/2(XTSSTX + nγId)(X
TX + nγId)

−1/2]†(A + B
)
.

By Assumption 1.1, we have that

(1− η)(XTX + nγId) � (XTSSTX + nγId) � (1 + η)(XTX + nγId).

It follows that∥∥∥[(XTX + nγId)
−1/2(XTSSTX + nγId)(X

TX + nγId)
−1/2]†∥∥∥

2
≤ 1

1− η
.

Thus∥∥∥(XTX + nγId)
1/2
(
Wc −W?

)∥∥∥2
F
≤ 1

1− η

∥∥∥A + B
∥∥∥2
F
≤ 2

1− η

(∥∥A∥∥2
F

+
∥∥B∥∥2

F

)
.

Lemma 25 shows

f
(
Wc

)
− f

(
W?

)
=

1

n

∥∥∥(XTX + nγId)
1/2(Wc −W?)

∥∥∥2
F
≤ 2

n(1− η)

(∥∥A∥∥2
F

+
∥∥B∥∥2

F

)
. (14)

We respectively bound ‖A‖2F and ‖B‖2F in the following. It follows from Assumption 1.2
and UTY⊥ = 0 that

‖A‖2F =
∥∥∥V(Σ2 + nγIρ)

−1/2ΣUSSTY⊥
∥∥∥2
F

≤
∥∥(Σ2 + nγIρ)

−1/2Σ
∥∥2
2

∥∥UTSSTY⊥ −UTY⊥
∥∥2
F

≤ ε
∥∥(Σ2 + nγIρ)

−1/2Σ
∥∥2
2

∥∥Y⊥∥∥2
F
.

By the definition of B, we have

‖B‖2F ≤ n2γ2
∥∥Σ(Σ2 + nγIρ)

−1/2(UTSSTU− Iρ)(Σ
2 + nγIρ)

−1UTY
∥∥2
F

≤ n2γ2
∥∥Σ(Σ2 + nγIρ)

−1/2(UTSSTU− Iρ)(Σ
2 + nγIρ)

−1/2∥∥2
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F

= n2γ2
∥∥ΣN

∥∥2
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F
,

where we define N = (Σ2 +nγIρ)
−1/2(UTSSTU− Iρ)(Σ

2 +nγIρ)
−1/2. By Assumption 1.1,

we have
−η(Σ2 + nγIρ)

−1 � N � η(Σ2 + nγIρ)
−1.
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It follows that

‖B‖2F ≤ n2γ2
∥∥ΣN2Σ

∥∥
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F

≤ η2n2γ2
∥∥Σ(Σ2 + nγIρ)

−2Σ
∥∥
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F

= η2n2γ2
∥∥(Σ2 + nγIρ)

−1Σ
∥∥2
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F

= η2nγ
∥∥(Σ2 + nγIρ)

−1/2Σ
∥∥2
2

∥∥(Σ2 + nγIρ)
−1/2UTY

∥∥2
F
.

The last equality follows from the fact that ‖(Σ2 +nγIρ)
−1/2‖2 ≤ (nγ)−1/2. It follows that

‖A‖2F + ‖B‖2F ≤ max
{
ε, η2

}∥∥∥(Σ2 + nγId)
−1Σ

∥∥∥
2

[∥∥Y⊥∥∥2
F

+ nγ
∥∥(Σ2 + nγId)

−1/2UTY
∥∥2
F

]
≤ max

{
ε, η2

} σ2
max

σ2
max + nγ

[∥∥Y⊥∥∥2
F

+ nγ
∥∥(Σ2 + nγId)

−1/2UTY
∥∥2
F

]
≤ max

{
ε, η2

}
βnf(W?). (15)

The last inequality follows from Lemma 25. The claimed result now follows from (15) and
(14).

B.3 Proof of Theorem 16

Proof By the definition of Wh and W?, we have

(XTX + nγId)
1/2
(
Wh −W?

)
= (XTX + nγId)

1/2
[
(XTSSTX + nγId)

† − (XTX + nγId)
†
]
XTY

= V(Σ2 + nγIρ)
1/2
[
(ΣUTSSTUΣ + nγIρ)

† − (Σ2 + nγIρ)
−1
]
ΣUTY.

It follows from Assumption 1.1 that UTSSTU has full rank, and thus

(XTX + nγId)
1/2
(
Wh −W?

)
= V(Σ2 + nγIρ)

1/2
[
(ΣUTSSTUΣ + nγIρ)

−1 − (Σ2 + nγIρ)
−1
]
ΣUTY

= V(Σ2 + nγIρ)
1/2(Σ2 + nγIρ)

−1(Σ2 −ΣUTSSTUΣ)(ΣUTSSTUΣ + nγIρ)
−1ΣUTY

= V(Σ2 + nγIρ)
−1/2Σ(Iρ −UTSSTU)Σ(ΣUTSSTUΣ + nγIρ)

−1ΣUTY,

where the second equality follow from M−1 −N−1 = N−1(N−M)M−1. We define

(XTX + nγId)
1/2
(
Wh −W?

)
= VABC,

where

A = (Σ2 + nγIρ)
−1/2Σ(Iρ −UTSSTU)Σ(Σ2 + nγIρ)

−1/2,

B = (Σ2 + nγIρ)
1/2(ΣUTSSTUΣ + nγIρ)

−1(Σ2 + nγIρ)
1/2,

C = (Σ2 + nγIρ)
−1/2ΣUTY.
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It follows from Assumption 1.1 that

‖A‖2 ≤ η
∥∥∥(Σ2 + nγIρ)

−1/2Σ2(Σ2 + nγIρ)
−1/2

∥∥∥
2
≤ ηβ,

‖B‖2 ≤ (1− η)−1.

It holds that∥∥C∥∥2
F
≤

∥∥∥(Σ2 + nγIρ)
−1/2ΣUTY

∥∥∥2
F

=

[
tr
(
YTUUTY

)
− nγ tr

(
YTU(Σ2 + nγId)

−1UTY
)]

=

[
− tr

(
YT (Id −UUT )Y

)
− nγ tr

(
YTU(Σ2 + nγId)

†UTY
)

+ tr
(
YTY

)]
=

(
− nf(W?) +

∥∥Y∥∥2
F

)
,

where the last equality follows from Lemma 25. It follows from Lemma 25 that

f(Wh)− f(W?) =
1

n

∥∥(XTX + nγId)
1/2
(
Wh −W?

)∥∥2
F

=
1

n

∥∥ABC
∥∥2
F
≤ η2β2

(1− η)2

( 1

n

∥∥Y∥∥2
F
− f(W?)

)
.

Appendix C. Sketched MRR from the Statistical Perspective: Proofs

In Section C.1 we prove Theorem 4. In Section C.2 we prove Theorem 17. In Section C.3
we prove Theorem 18. In Section A.2 we prove Theorem 13. In Section C.4 we prove
Theorem 19. Recall that the fixed design model is Y = XW0 + Ξ where Ξ is random,
EΞ = 0, and E[ΞΞT ] = ξ2In.

C.1 Proofs of Theorem 4

We prove Theorem 4 in the following. In the proof we exploit several identities. The
Frobenius norm and matrix trace satisfy

‖A−B‖2F = tr
[
(A−B)(A−B)T )

]
= tr(AAT ) + tr(BBT )− 2tr(ABT )

for any conformal matrices A and B. The trace is linear, and thus for any fixed A and B
and conformal random matrix Ψ,

E
[
tr(AΨB)

]
= tr

[
A(EΨ)B

]
,

where the expectation is taken with respect to Ψ.
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Proof It follows from the definition of the optimal solution W? in (2) that

XW? = X(XTX + nγId)
†XT (XW0 + Ξ)

= U(Σ2 + nγIρ)
−1Σ3VTW0 + U(Σ2 + nγIρ)

−1Σ2UTΞ

= U
[
Iρ − nγ(Σ2 + nγIρ)

−1
]
ΣVTW0 + U(Σ2 + nγIρ)

−1Σ2UTΞ

= XW0 − nγU(Σ2 + nγIρ)
−1ΣVTW0 + U(Σ2 + nγIρ)

−1Σ2UTΞ.

Since E[Ξ] = 0 and E[ΞΞT ] = ξ2In, it holds that

R(W?) =
1

n
E
∥∥XW? −XW0

∥∥2
F

=
1

n

∥∥∥− nγ(Σ2 + nγIρ)
−1ΣVTW0 + (Σ2 + nγIρ)

−1Σ2UTΞ
∥∥∥2
F

= nγ2
∥∥∥(Σ2 + nγIρ)

−1ΣVTW0

∥∥∥2
F

+
ξ2

n

∥∥∥(Σ2 + nγIρ)
−1Σ2

∥∥∥2
F
.

This exposes expressions for the bias and variance of the optimal solution W?.

We now decompose the risk function R
(
Wc

)
. It follows from the definition of Wc in

(3) that

XWc = X(XTSSTX + nγId)
†XTSST (XW0 + Ξ)

= UΣ
(
ΣUTSSTUΣ + nγId

)†
Σ
(
UTSSTUΣVTW0 + UTSSTΞ

)
= U(UTSSTU + nγΣ−2)−1

[
(UTSSTU + nγΣ−2)ΣVTW0 − nγΣ−1VTW0 + UTSSTΞ

]
= XW0 + U(UTSSTU + nγΣ−2)−1

(
− nγΣ−1VTW0 + UTSSTΞ

)
.

Since E[Ξ] = 0 and E[ΞΞT ] = ξ2In, it follows that

R
(
Wc

)
=

1

n
E
∥∥XWc −XW0

∥∥2
F

=
1

n

∥∥∥− nγ(UTSSTU + nγΣ−2)−1Σ−1VTW0 + (UTSSTU + nγΣ−2)−1UTSSTΞ
∥∥∥2
F

= nγ2
∥∥∥(UTSSTU + nγΣ−2)−1Σ−1VTW0

∥∥∥2
F

+
ξ2

n

∥∥∥(UTSSTU + nγΣ−2)−1UTSST
∥∥∥2
F
.

This exposes expressions for the bias and variance of the approximate solution Wc.

We now decompose the risk function R
(
Wh

)
. It follows from the definition of Wh in

(4) that

XWh −XW0 = X(XTSSTX + nγIn)†XT (XW0 + Ξ)−XW0

= X(XTSSTX + nγId)
†XTXW0 −XW0 + X(XTSSTX + nγId)

†XTΞ

= U
[
(UTSSTU + nγΣ−2)−1 − I−1ρ

]
UTXW0 + U(UTSSTUT + nγΣ−2)†UTΞ

= U
(
Iρ −UTSSTU− nγΣ−2

)(
UTSSTU + nγΣ−2

)−1
ΣVTW0

+ U(UTSSTUT + nγΣ−2)†UTΞ,
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where the last equality follows from the fact that A−1 −B−1 = B−1(B −A)A−1 for any
conformal nonsingular matrices A and B. Since E[Ξ] = 0 and E[ΞΞT ] = ξ2In, it follows
that

R
(
Wh

)
= bias2

(
Wh

)
+ var

(
Wh

)
,

where

bias2
(
Wh

)
=

1

n

∥∥∥(nγΣ−2 + UTSSTU− Iρ
)(

UTSSTU + nγΣ−2
)−1

ΣVTW0

∥∥∥2
F
,

var
(
Wh

)
=

ξ2

n

∥∥∥(UTSSTU + nγΣ−2
)−1∥∥∥2

F
.

This exposes expressions for the bias and variance of Wh.

C.2 Proof of Theorem 17

Proof Assumption 1.1 ensures that (1− η)Iρ � UTSSTU � (1 + η)Iρ. It follows that

(1− η)
(
Iρ + nγΣ−2

)
� UTSSTU + nγΣ−2 � (1 + η)

(
Iρ + nγΣ−2

)
.

The bias term can be written as

bias2
(
Wc

)
= nγ2

∥∥(UTSSTU + nγΣ−2
)†

Σ−1VTW0

∥∥2
F

= nγ2 tr
(
WT

0 VΣ−1
[
(UTSSTU + nγΣ−2)†

]2
Σ−1VTW0

)
≤ nγ2

(1−η)2
∥∥(Iρ + nγΣ−2

)−1
Σ−1VTW0

∥∥2
F

= nγ2

(1−η)2
∥∥(Σ2 + nγIρ

)−1
ΣVTW0

∥∥2
F

= 1
(1−η)2 bias2(W?).

We can analogously show bias2(Wc) ≥ 1
(1+η)2

bias2(W?).

Let B =
(
UTSSTU + nγΣ−2

)†
UTS ∈ Rρ×s. By Assumption 1.1, it holds that

(1− η)
[(

UTSSTU + nγΣ−2
)2]† � BBT � (1 + η)

[(
UTSSTU + nγΣ−2

)2]†
.

Applying Assumption 1.1 again, we obtain

(1− η)2
(
Iρ + nγΣ−2

)2 � (
UTSSTU + nγΣ−2

)2 � (1 + η)2
(
Iρ + nγΣ−2

)2
.

Note that both sides are nonsingular. Combining the above two equations, we have

1−η
(1+η)2

(
Iρ + nγΣ−2

)−2 � BBT � 1+η
(1−η)2

(
Iρ + nηΣ−2

)−2
.

Taking the trace of all the terms, we obtain

1−η
(1+η)2

≤ ‖B‖2F
‖(Iρ+nγΣ−2)−1‖2F

≤ 1+η
(1−η)2 .
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The variance term can be written as

var
(
Wc

)
= ξ2

n

∥∥BST
∥∥2
F
≤ ξ2

n

∥∥B∥∥2
F

∥∥S∥∥2
2

≤ ξ2(1+η)
n(1−η)2

∥∥(Iρ + nγΣ−2
)−1∥∥2

F

∥∥S∥∥2
2

=
(1+η)‖S‖22
(1−η)2 var(W?).

The upper bound on the variance follows from Assumption 1.3.

C.3 Proof of Theorem 18

Proof Let B =
(
UTSSTU + nγΣ−2

)†
UTS ∈ Rρ×s. In the proof of Theorem 5 we show

that

var
(
Wc

)
= ξ2

n

∥∥BST
∥∥2
F
.

If STS � ϑn
s Is, then it holds that

var
(
Wc

)
= ξ2

n

∥∥BST
∥∥2
F
≥ ϑn

s
ξ2

n

∥∥B∥∥2
F
≥ ϑn

s
1−η

(1+η)2
var(W?).

This establishes the lower bounds on the variance.

C.4 Proof of Theorem 19

Proof Theorem 4 shows that

bias
(
Wh

)
= γ

√
n

∥∥∥∥(Σ−2 +
UTSSTU−Iρ

nγ

)(
UTSSTU + nγΣ−2

)†
ΣVTW0

∥∥∥∥
F

= γ
√
n
∥∥AΣ2B

∥∥
F
≤ γ
√
n
∥∥AΣ2

∥∥
2

∥∥B∥∥
F
,

var
(
Wh

)
=

ξ2

n

∥∥∥(UTSSTU + nγΣ−2
)†∥∥∥2

F
,

where we define

A = Σ−2 +
UTSSTU−Iρ

nγ ,

B = Σ−2
(
UTSSTU + nγΣ−2

)†
ΣVTW0.

We first analyze the bias. It follows from Assumption 1.1 that

Σ−2
(
Iρ − η

nγΣ2
)
� A � Σ−2

(
Iρ + η

nγΣ2
)
. (16)

Since
(
Iρ − η

nγΣ2
)2 � (Iρ + η

nγΣ2
)2 � (1 +

ησ2
1

nγ

)2
Iρ, it follows that

A2 � Σ−4
(
Iρ + η

nγΣ2
)2 � (

1 +
ησ2

1
nγ

)2
Σ−4.
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Thus ∥∥AΣ2
∥∥2
2

=
∥∥Σ2A2Σ2

∥∥
2
≤
(

1 +
ησ2

1
nγ

)2
.

It follows from Assumption 1.1 that

(1 + η)−1
(
Iρ + nγΣ−2

)−1 � (
(1 + η)Iρ + nγΣ−2

)−1
�
(
UTSSTU + nγΣ−2

)† � (
(1− η)Iρ + nγΣ−2

)−1 � (1− η)−1
(
Iρ + nγΣ−2

)−1
.

Thus

BTB = WT
0 VΣ3

(
Σ−2(UTSSTU + nγΣ−2)†Σ−2

)2
Σ3VTW0

� (1− η)−2WT
0 VΣ3

(
Σ−2(Iρ + nγΣ−2)−1Σ−2

)2
Σ3VTW0

= (1− η)−2WT
0 VΣ

(
Σ2 + nγIρ

)−2
ΣVTW0. (17)

It follows that

‖B‖2F = tr
(
BTB

)
≤ (1− η)−2

∥∥(Σ−2 + nγIρ
)−1

ΣVTW0

∥∥2
F

= bias2(W?)
nγ2(1−η)2 ,

where the last equality follows from the definition of bias(W?). By the definition of A and
B, we have

bias2
(
Wh

)
≤ γ2n

∥∥AΣ2
∥∥2
2

∥∥B∥∥2
F

= 1
(1−η)2

(
1 +

ησ2
1

nγ

)2
bias2

(
W?

)
.

Thus, the upper bound on bias
(
Wh

)
is established.

Using the same A and B, we can also show that

bias
(
Wh

)
= γ

√
n
∥∥AΣ2B

∥∥
F
≥ γ
√
n σmin

(
AΣ2

) ∥∥B∥∥
F
.

Assume that σ2ρ ≥
nγ
η . It follows from (16) that

A2 �
(ησ2

ρ

nγ − 1
)2

Σ−4.

Thus
σ2min

(
AΣ2

)
= σmin(Σ2A2Σ2) ≥

(ησ2
ρ

nγ − 1
)2
.

It follows from (17) that

BTB � (1 + η)−2WT
0 VΣ

(
Σ2 + nγIρ

)−2
ΣVTW0.

Thus

‖B‖2F = tr
(
BTB

)
≥ (1 + η)−2

∥∥(Σ−2 + nγIρ
)−1

ΣVTW0

∥∥2
F

= 1
nγ2(1+η)2

bias2(W?).

In sum, we obtain

bias2
(
Wh

)
≥ γ2n σ2min

(
AΣ2

) ∥∥B∥∥2
F

= (1 + η)−2
(ησ2

ρ

nγ − 1
)2

bias2
(
W?

)
.

Thus, the lower bound on bias
(
Wh

)
is established.
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It follows from Assumption 1.1 that

(1 + η)−1
(
Iρ + nγΣ−2

)−1 � (
UTSSTU + nγΣ−2

)−1 � (1− η)−1
(
Iρ + nγΣ−2

)−1
.

It follows from Theorem 4 that

var
(
Wh

)
= ξ2

n

∥∥(UTSSTU + nγΣ−2
)−1∥∥2

F

∈ 1
1∓η

ξ2

n

∥∥(Iρ + nγΣ−2
)−1∥∥2

F

= 1
1∓ηvar

(
W?

)
.

This concludes the proof.

Appendix D. Model Averaging from the Optimization Perspective:
Proofs

In Section D.1 we prove Theorem 20. In Section D.2 we prove Theorem 21.

D.1 Proof of Theorem 20

Proof By Lemma 25, we only need to show that ‖(XTX + nγId)
1/2(Wc −W?)‖2F ≤

nαβf(W?). In the proof, we define ρ = rank(X) and let σ1 ≥ · · · ≥ σρ be the singular
values of X.

In the proof of Theorem 15 we show that

(XTX + nγId)
1/2
(
Wc

i −W?
)

=
[
(XTX + nγId)

−1/2(XTSiS
T
i X + nγId)(X

TX + nγId)
−1/2]†(Ai + Bi

)
= C†i

(
Ai + Bi

)
,

where

Ai = V(Σ2 + nγIρ)
−1/2ΣUSiS

T
i Y⊥,

Bi = nγVΣ(Σ2 + nγIρ)
−1/2(UTSiS

T
i U− Iρ)(Σ

2 + nγIρ)
−1UTY

Ci =
[
(XTX + nγId)

1/2
]†(

XTSiS
T
i X + nγId

)[
(XTX + nγId)

1/2
]†

= V(Iρ + nγΣ−2)−1/2(UTSiS
T
i U + nγΣ−2)(Iρ + nγΣ−2)−1/2VT

= VVT + V(Iρ + nγΣ−2)−1/2(UTSiS
T
i U− Iρ)(Iρ + nγΣ−2)−1/2VT .

By Assumption 2.1, we have that Ci �
(
1− η σ2

max
σ2
max+nγ

)
VVT . Since η ≤ 1/2, it follows that

C†i �
(
1+ 2η σ2

max
σ2
max+nγ

)
VVT . Let C†i = VVT +V∆iV

T . It holds that ∆i � 2η σ2
max

σ2
max+nγ

VVT �
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2ηβVVT . By definition, Wc = 1
g

∑g
i=1 Wc

i . It follows that

∥∥∥(XTX + nγId)
1/2(Wc

i −W?)
∥∥∥
F

=
∥∥∥1

g

g∑
i=1

C†i (Ai + Bi)
∥∥∥
F

≤
∥∥∥1

g

g∑
i=1

(Ai + Bi)
∥∥∥
F

+
∥∥∥1

g

g∑
i=1

V∆iV
T (Ai + Bi)

∥∥∥
F

≤
∥∥∥1

g

g∑
i=1

Ai

∥∥∥
F

+
∥∥∥1

g

g∑
i=1

Bi

∥∥∥
F

+
1

g

g∑
i=1

∥∥∆i

∥∥
2

(∥∥Ai

∥∥
F

+
∥∥Bi

∥∥
F

)
≤
∥∥∥1

g

g∑
i=1

Ai

∥∥∥
F

+
∥∥∥1

g

g∑
i=1

Bi

∥∥∥
F

+ 2ηβ
1

g

g∑
i=1

(∥∥Ai

∥∥
F

+
∥∥Bi

∥∥
F

)
. (18)

By Assumption 2.3, we have that

1

g

g∑
i=1

∥∥Ai

∥∥
F

=
∥∥(Σ2 + nγId)

−1/2Σ
∥∥
2
· 1

g

g∑
i=1

∥∥UTSiS
T
i Y⊥

∥∥
F
≤
√

ε σ2
max

σ2
max+nγ

∥∥Y⊥∥∥
F
.

We apply Assumption 2.1 and follow the proof of Theorem 15 to show that∥∥Bi

∥∥2
F
≤ η2nγ σ2

max
σ2
max+nγ

∥∥∥(Σ2 + nγId)
−1/2UTY

∥∥∥2
F
.

It follows that

1

g

g∑
i=1

(∥∥Ai

∥∥
F

+
∥∥Bi

∥∥
F

)
≤ max

{√
ε, η
}√

σ2
max

σ2
max+nγ

(∥∥Y⊥∥∥
F

+
√
nγ
∥∥(Σ2 + nγId)

−1/2UTY
∥∥
F

)
≤ max

{√
ε, η
}√

β

√
2
∥∥Y⊥∥∥2

F
+ 2nγ

∥∥(Σ2 + nγId)−1/2UTY
∥∥2
F

= max
{√

ε, η
}√

β
√

2n f(W?). (19)

Here the equality follows from Lemma 25. Let S = 1
g [S1, · · · ,Sg] ∈ Rn×sg. We have that

1

g

g∑
i=1

Ai = V(Σ2 + nγId)
−1/2ΣUTSSTY⊥,

1

g

g∑
i=1

Bi = nγVΣ(Σ2 + nγId)
−1/2(UTSSTU− Iρ)(Σ

2 + nγIρ)
−1UTY.

Applying Assumptions 2.1 and 2.2, we use the same techniques as in the above to obtain

∥∥∥1

g

g∑
i=1

Ai

∥∥∥
F

+
∥∥∥1

g

g∑
i=1

Bi

∥∥∥
F
≤

√√√√2
∥∥∥1

g

g∑
i=1

Ai

∥∥∥2
F

+ 2
∥∥∥1

g

g∑
i=1

Bi

∥∥∥2
F

≤ max
{√

ε√
g ,

η√
g

}√
σ2
max

σ2
max+nγ

√
2n f(W?) = max

{√
ε, η
} √β√

g

√
2n f(W?). (20)

43



Wang, Gittens, and Mahoney

It follows from (18), (19), and (20) that∥∥∥(XTX + nγId)
1/2(Wc

i −W?)
∥∥∥
F

≤
∥∥∥1

g

g∑
i=1

Ai

∥∥∥
F

+
∥∥∥1

g

g∑
i=1

Bi

∥∥∥
F

+ 2ηβ
1

g

g∑
i=1

(∥∥Ai

∥∥
F

+
∥∥Bi

∥∥
F

)
≤
[

1√
g max

{√
ε, η
}

+ 2βη ·max
{√

ε, η
}]√

β
√

2n f(W?)

= max
{√

ε, η
}
·
(

1√
g + 2βη

)√
β
√

2n f(W?)

=
√
αβn f(W?).

This concludes our proof.

D.2 Proof of Theorem 21

Proof By Lemma 25, we only need to show that
∥∥(XTX + nγId)

1/2
(
Wh −W?

)∥∥2
F
≤

α2β2
(
− nf(W?) + ‖Y‖2F

)
.

In the proof of Theorem 2 we show that

(XTX + nγId)
1/2
(
Wh

i −W?
)

= VAiBiC,

where

Ai = (Σ2 + nγIρ)
−1/2Σ(Iρ −UTSiS

T
i U)Σ(Σ2 + nγIρ)

−1/2,

Bi = (Σ2 + nγIρ)
1/2(ΣUTSiS

T
i UΣ + nγIρ)

−1(Σ2 + nγIρ)
1/2,

C = (Σ2 + nγIρ)
−1/2ΣUTY.

It follows from Assumption 2.1 that for all i ∈ [g],

1
1+η (Σ2 + nγIρ)

−1 � (ΣUTSiS
T
i UΣ + nγIρ)

−1 � 1
1−η (Σ2 + nγIρ)

−1.

We let Bi = Iρ + ∆i. Thus − η
1+η Iρ �∆i � η

1−η Iρ. It follows that

(XTX + nγId)
1/2
(
Wh −W?

)
=

1

g

g∑
i=1

(XTX + nγId)
1/2
(
Wh

i −W?
)

=
1

g

g∑
i=1

VAi(Iρ + ∆i)C =
1

g

g∑
i=1

VAiC +
1

g

g∑
i=1

VAi∆iC.

It follows that∥∥∥(XTX + nγId)
1/2
(
Wh −W?

)∥∥∥
F
≤
∥∥∥1

g

g∑
i=1

Ai

∥∥∥
2

∥∥∥C∥∥∥
F

+
1

g

g∑
i=1

∥∥Ai

∥∥
2

∥∥∆i

∥∥
2

∥∥C∥∥
F

≤
∥∥∥1

g

g∑
i=1

Ai

∥∥∥
2

∥∥∥C∥∥∥
F

+
η

1− η

(1

g

g∑
i=1

∥∥Ai

∥∥
2

)∥∥C∥∥
F
. (21)
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Let S = 1
g [S1, · · · ,Sg] ∈ Rn×gs. It follows from the definition of Ai that

∥∥Ai

∥∥
2

=
∥∥∥(Σ2 + nγIρ)

−1/2Σ(Iρ −UTSiS
T
i U)Σ(Σ2 + nγIρ)

−1/2
∥∥∥
2

≤ η
∥∥∥(Σ2 + nγIρ)

−1/2ΣΣ(Σ2 + nγIρ)
−1/2

∥∥∥
2

= η σ2
max

σ2
max+nγ

= ηβ,∥∥∥1

g

g∑
i=1

Ai

∥∥∥
2

=
∥∥∥(Σ2 + nγIρ)

−1/2Σ(Iρ −UTSSTU)Σ(Σ2 + nγIρ)
−1/2

∥∥∥
2

≤ η√
g

∥∥(Σ2 + nγIρ)
−1/2ΣΣ(Σ2 + nγIρ)

−1/2∥∥
2

= η√
g

σ2
max

σ2
max+nγ

= ηβ√
g .

It follows from (21) that

∥∥∥(XTX + nγId)
1/2
(
Wh −W?

)∥∥∥
F

≤
(

η√
g + η2

1−η

)
β
∥∥C∥∥

F

≤
(

η√
g + η2

1−η

)
β
√
−nf(W?) + ‖Y‖2F ,

where the latter inequality follows from the proof of Theorem 16. This concludes the proof.

Appendix E. Model Averaging from the Statistical Perspective: Proofs

In Section E.1 we prove Theorem 22. In Section E.2 we prove Theorem 23.

E.1 Proof of Theorem 22

Proof The bound on bias
(
Wc

)
can be shown in the same way as the proof of Theorem 17.

We prove the bound on var
(
Wc

)
in the following. It follows from Assumption 2.1 that

(1 + η)−1(Iρ + nγΣ−2)−1 � (UTSiS
T
i U + nγΣ−2)† � (1− η)−1(Iρ + nγΣ−2)−1.

Let

(UTSiS
T
i U + nγΣ−2)† = (Iρ + nγΣ−2)−1/2(Iρ + ∆i)(Iρ + nγΣ−2)−1/2.

It holds that

− η

1 + η
Iρ � ∆i �

η

1− η
Iρ.
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By the definition of var(Wc) in Theorem 9, we have that

√
var
(
Wc

)
=

ξ√
n

∥∥∥∥1

g

g∑
i=1

(Iρ + nγΣ−2)−1UTSiS
T
i +

1

g

g∑
i=1

(Iρ + nγΣ−2)−1/2∆i(Iρ + nγΣ−2)−1/2UTSiS
T
i

∥∥∥∥
F

≤ ξ√
n

(∥∥∥(Iρ + nγΣ−2)−1UTSST
∥∥∥
F

+
1

g

g∑
i=1

∥∥∥(Iρ + nγΣ−2)−1/2∆i(Iρ + nγΣ−2)−1/2UTSiS
T
i

∥∥∥
F

)
≤ ξ√

n

∥∥(Iρ + nγΣ−2)−1
∥∥
F

(∥∥UTS
∥∥
2

∥∥S∥∥
2

+
η

1− η
1

g

g∑
i=1

∥∥UTSi
∥∥
2

∥∥Si∥∥2)
=
√
var
(
W?

)(∥∥UTS
∥∥
2

∥∥S∥∥
2

+
η

1− η
1

g

g∑
i=1

∥∥UTSi
∥∥
2

∥∥Si∥∥2).
Under Assumption 2.1, we have that ‖STi U‖22 ≤ 1 + η and ‖STU‖22 ≤ 1 + η√

g . It follows

that

√
var
(
Wc

)
var
(
W?

) ≤ √
1 +

η
√
g

∥∥S∥∥
2

+
η
√

1 + η

1− η
1

g

g∑
i=1

∥∥Si∥∥2.
Now the desired result follows from Assumption 2.3.

E.2 Proof of Theorem 23

Proof The bound on var
(
Wh

)
can be established in the same way as Theorem 19.

We prove the bound on bias
(
Wh

)
in the following. Let

(UTSiS
T
i U + nγΣ−2)† = (Iρ + nγΣ−2)−1/2(Iρ + ∆i)(Iρ + nγΣ−2)−1/2.

Under Assumption 2.1, we have that ∆i � η
1−η Iρ. It follows from Theorem 9 that

bias
(
Wh

)
= γ
√
n

∥∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)
(UTSiS

T
i U + nγΣ−2)†ΣVTW0

∥∥∥∥
F

≤ γ
√
n

∥∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)
(Iρ + nγΣ−2)−1ΣVTW0

∥∥∥∥
F

+ γ
√
n

∥∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)
(Iρ + nγΣ−2)−1/2∆i(Iρ + nγΣ−2)−1/2ΣVTW0

∥∥∥∥
F

, γ
√
n
(
A+B

)
,
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where

A =
∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)(
Iρ + nγΣ−2

)−1
ΣVTW0

∥∥∥
F

=
∥∥∥(Σ−2 +

UTSSTU−Iρ
nγ

)(
Iρ + nγΣ−2

)−1
ΣVTW0

∥∥∥
F
,

B =
∥∥∥1

g

g∑
i=1

(
Σ−2 +

UTSiS
T
i U−Iρ
nγ

)(
Iρ + nγΣ−2

)−1/2
∆i

(
Iρ + nγΣ−2

)−1/2
ΣVTW0

∥∥∥
F

≤ 1

g

g∑
i=1

∥∥∥(Σ−2 +
UTSiS

T
i U−Iρ
nγ

)(
Iρ + nγΣ−2

)−1/2
∆i

(
Iρ + nγΣ−2

)−1/2
ΣVTW0

∥∥∥
F
.

It follows from Assumption 2.1 that UTSSTU−Iρ is semidefinitely bounded between± η√
g Iρ.

Thus (
1− ησ2

max
nγ
√
g

)
Σ−2 � Σ−2 +

UTSSTU−Iρ
nγ �

(
1 + ησ2

max
nγ
√
g

)
Σ−2.

It follows that

A =
∥∥∥(Σ−2 +

UTSSTU−Iρ
nγ

)(
Iρ + nγΣ−2

)−1
ΣVTW0

∥∥∥
F

≤
(

1 + ησ2
max

nγ
√
g

)∥∥∥(Σ2 + nγIρ
)−1

ΣVTW0

∥∥∥
F
.

Similar to the proof of Theorem 19, we can show that

B ≤
(

1 +
ησ2max

nγ

)
· 1

g

g∑
i=1

∥∥∥Σ−2(Iρ + nγΣ−2
)−1/2

∆i

(
Iρ + nγΣ−2

)−1/2
ΣVTW0

∥∥∥
F

≤ η

1− η

(
1 +

ησ2max

nγ

)
·
∥∥∥(Σ2 + nγIρ

)−1
ΣVTW0

∥∥∥
F
.

Hence

bias
(
Wh

)
≤ γ
√
n
(
A+B

)
≤
[

1
1−η +

(
η√
g + η2

1−η

)
σ2
max
nγ

]
γ
√
n
∥∥∥(Σ2 + nγIρ

)−1
ΣVTW0

∥∥∥
F

=
[

1
1−η +

(
η√
g + η2

1−η

)
σ2
max
nγ

]
bias

(
W?

)
.

Here the equality follows from Theorem 4.
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