
Accelerating Transformer-based Deep Learning
Models on FPGAs using Column Balanced Block

Pruning
*Hongwu Peng[1], Shaoyi Huang[1], Tong Geng[2], Ang Li[2], Weiwen Jiang[3],

Hang Liu[4], Shusen Wang[4], and Caiwen Ding[1]

[1]University of Connecticut, Storrs, CT, USA
[2]Pacific Northwest National Laboratory, Richland, WA, USA

[3]University of Notre Dame, Notre Dame, IN, USA
[3]Stevens Institute of Technology, Hoboken, NJ, USA

*hongwu.peng@uconn.edu

Abstract—Although Transformer-based language representa-
tions achieve state-of-the-art accuracy on various natural lan-
guage processing (NLP) tasks, the large model size has been chal-
lenging the resource constrained computing platforms. Weight
pruning, as a popular and effective technique in reducing the
number of weight parameters and accelerating the Transformer,
has been investigated on GPUs. However, the Transformer
acceleration using weight pruning on field-programmable gate
array (FPGAs) remains unexplored. This paper investigates the
column balanced block-wise pruning on Transformer and designs
an FPGA acceleration engine to customize the balanced block-
wise matrix multiplication. We implement the Transformer model
with proper hardware scheduling, and the experiments show that
the Transformer inference on FPGA achieves 10.35 ms latency
with the batch size of 32, which is 10.96 × speed up comparing to
CPU platform and 2.08 × speed up comparing to GPU platform.

Index Terms—Transformer, deep learning, pruning, accelera-
tion, FPGA

I. INTRODUCTION

In the field of natural language processing (NLP), the recur-

rent neural network (RNN) [1], and long short term memory

(LTSM) model [2] have been well deployed to different tasks

in the past. However, the RNN and LTSM models’ training

and inference are intrinsically sequential computation tasks,

making it difficult to accelerate on today’s hardware, e.g.,

GPUs and field-programmable gate array (FPGAs) [3], [4].

In 2017, the Transformer architecture, which relies on self-

attention mechanisms [5] was proposed. The Transformer

model enables a high level of computation parallelism on both

training and computation. It outperforms RNN and LSTM

in major NLP tasks, such as language inference, question

answering, and sentiment analysis.

On the other hand, weight pruning methodology such as

irregular pruning [6], structured pruning [7], pattern prun-

ing [8] have been widely used for deep neural networks in

the computer vision field. It has also been used to accelerate

Transformer-based DNNs due to the enormous parameters

or model size of the Transformer. With weight pruning, the

size of the Transformer can be significantly reduced without

much prediction accuracy degradation [9]. Therefore, we can

accommodate the compressed and high accurate Transformer

model into FPGAs. In recent years, because of its extremely

low-latency, high energy efficiency, and flexible reprogramma-

bility for easy prototyping, FPGAs have received much atten-

tion as an alternative accelerating solution to GPU for ML

and real-time data analytics applications [10]. However, the

current state-of-the-art Transformer acceleration focus on the

GPUs [11]–[13]. There lacks of comprehensive investigation

on Transformer acceleration using hardware-aware weight

pruning FPGA.

In this paper, we focus on the acceleration of the Trans-

former model on FPGAs with the balanced block pruning tech-

nique. We further propose hardware design and the resource

scheduling to achieve high parallelism and high throughput on

FPGA device. Our contributions are summarized as follows:

• A column balanced block pruning technique and its

storage format are developed. The indices pointer matrix

has much lower memory storage overhead than that of

other sparse matrix formats.

• A specialized process element (PE) is introduced for the

sparse matrix multiplication accelerator, and multiple PEs

can be used to increase the accelerator throughput.

• The hardware resource scheduling for the

encoder/decoder accelerator on FPGA is discussed,

and we achieve a high overall hardware throughput.

We implement the proposed techniques on different hard-

ware platforms (Intel i5-5257U (2.7 GHZ) CPU, Nvidia Jetson

TX2 GPU, and Xilinx Alveo U200 FPGA) for further com-

parison of latency and throughput. Experimental results show

that the FPGA hardware design enables a 10.96 × speed up

on the FPGA platform comparing to the CPU platform and

2.08 × speed up compared to the GPU platform.

The organization of the work is as follows. Section II

gives the basic Transformer model and DNN model compres-

sion knowledge, and the structure of the encoder is given.

Section III proposes a column balanced block-wise pruning

978-1-7281-7641-3/21/$31.00 ©2021 IEEE 142 22nd Int'l Symposium on Quality Electronic Design

20
21

 2
2n

d
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

Q
ua

lit
y

E
le

ct
ro

ni
c

D
es

ig
n

(I
SQ

E
D

)
| 9

78
-1

-7
28

1-
76

41
-3

/2
0/

$3
1.

00
 ©

20
21

 I
E

E
E

 |
D

O
I:

 1
0.

11
09

/I
SQ

E
D

51
71

7.
20

21
.9

42
43

44

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

structure and its pruning algorithm. Section IV gives the hard-

ware design for the sparse matrix multiplication accelerator

and the overall Transformer structure. Section V gives the

Transformer model’s training, the hardware scheduling result

of the encoder/decoder layer, and the inference speed for

different hardware platforms. Section VI gives the overall

conclusion for the hardware design and experiments.

II. BACKGROUND AND RELATED WORK

This section focuses on the background of the Transformer

model and the pruning methods for the hardware acceleration.

A. Transformer Model

The Transformer model was firstly proposed in 2017 [5]

for NLP tasks. Different Transformer-based models have been

proposed, such as BERT [14], RoBERTa [15], which utilizes

more layers and heads to achieve better performance on major

NLP tasks. To reduce the model size, DistilBERT [16] was

invented based on knowledge distilling [16], and achieves

40% model size reduction from BERT without much accu-

racy degradation. Moreover, the Transformer model has been

utilized in the computer vision field, such as the Transformer

for image recognition [17] and the Transformer for object

detection [18].

������ ������ ������

�	�
�����������	�����������

���	��
��

�������	���

��������
��	����

����� �

�

�����

������

� �

�

��

�������	���

!�
�

��������

��

�������	���

Fig. 1: Encoder structure.

Our research will focus on the Transformer model inference

acceleration on FPGAs. The encoder structure of our Trans-

former is shown in Fig. 1. Our Transformer has 2 layers of

encoder and 4 heads. The decoder is simply a linear layer

on top of the encoder stack. The scaled dot product attention

is used for the self-attention mechanism, and the equation is

shown below:

Attention(Q,K,V) = Softmax(Mask(
Q×KT

√
dk

))×V (1)

B. DNN Model Compression and Sparsity Pattern

Different model compression techniques have been studied

to reduce the parameter size and computation burden of the

deep neural networks (DNNs). The main challenge of the

state-of-the-art model compression techniques is maintaining

the model accuracy while improving the model execution

efficiency on hardware devices. Irregular pruning methods

[11] enables high prune ratio without much performance

degradation. However, it is not easy to be accelerated on GPUs

and FPGAs due to its random memory access pattern and

extra indices overhead. For instance, when storing an irregular

sparse matrix using Coordinate (COO) format, we store the

subsequent nonzero and related coordinates in memory. Three

vectors are needed: row, col, data, where data[i] is value

at (row[i], col[i]) position. The regular pruning features its

relatively higher regularity on non-zero elements, and the

regularity can help speed up the sparse matrix multiplication

on FPGAs and GPUs. Regular pruning, such as bank balanced

pruning [19]–[21], block-circulant matrix pruning [22], and

block pruning [11], have been developed. However, the block

pruning structure has only been implemented on GPUs in

the past; the block pruning structure’s acceleration on FPGAs

remains unexplored.

III. SPARSE MATRIX FORMAT AND PRUNING ALGORITHM

In this section, we will evaluate different sparse matrix

formats. A row balanced block-wise sparsity is proposed,

which strikes a better balance between index storage overhead

and high accuracy. It also achieves high hardware parallelism

among different pruning methodologies.

A. Comparison of Different Sparse Matrix Formats

Fig. 2 shows an example of four different types of prun-

ing pattern for sparse matrix. The first one is the irregular

pruning technique. The irregular pruning pattern puts a weight

threshold for the specific pruning ratio and prunes out the

elements below the weight threshold. The pruning is done in an

element-wise pattern so that the irregular pruning pattern has

the lowest accuracy drop as the pruning ratio increases. The

irregular sparsity matrix indices can be stored in Compressed

Sparse Row (CSR) format or Coordinate list (COO) format,

both of which will occupy extra storage space. When the

pruning ratio is low, the required memory space for irregular

sparsity matrix storage might be higher than that of a dense

matrix. Furthermore, the irregular sparsity matrix imposes a

great challenge on the hardware design. The non-zero element

of the irregular sparsity matrix is randomly distributed over

the entire matrix, which results in an irregular memory access

pattern and stalls the hardware parallelism. Thus, the speedup

for the irregular sparsity matrix’s operation can be negative.

As a result, other types of regular pruning structures were

proposed.

The bank balanced pruning has been widely used in dif-

ferent DNN applications. [19] discussed the hardware accel-

eration of bank balanced pruning sparse matrix operation on

GPUs, and [20], [21] implement the bank balances structure

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

���������	
������
��� ��������

������
���������	

������
������	��������	

����������	
������

��
�����
����������

������
������

��!

��!

�����"#%� ������&#&� ������&#&�

Fig. 2: Four types of pruning pattern with 0.33 pruning ratio: irregular
pruning, bank balanced pruning, block-wise pruning, and column
balanced block-wise pruning.

matrix operation on FPGAs. Both of the papers showed

detailed hardware design and performance evaluation for bank

balanced pruning. [20] proposed a Compressed Sparse Banks

(CSB) for the sparse matrix storage. However, both the CSR

and CSB formats require at least one index pointer for each

non-zero element, which leads to extra memory occupation

overhead. Banks balanced pruning may require more memory

space at a low pruning ratio than the dense matrix because of

the index pointer storage overhead.

The third pattern, block-wise pruning [22], calculates the

block’s L2 norm and prunes the block with a lower L2 norm.

The block-wise pruning is similar to irregular pruning except

that the weight importance is calculated for each block rather

than individual elements. Block Compressed Sparse Row

(BCSR) format can be used to store the weight matrix, which

significantly reduces index pointer storage overhead since the

whole block of elements share the same index. However, the

blocks are randomly pruned over the entire matrix, making the

hardware design for intra-block parallelism a great challenge.

*���+,	��,��;

�������	
���,��<="	<=>
<=%	<=!

<=?	<=&
<=@	<=%

<=>	<=A
<=B	<=?

<=%	<="
<=!	<=&

<=&	<=B
<=!	<=%

<=A	<=B
<=>	<=!

<					"					<

&					&					"

C�,�

<="	<=>
<=%	<=!

<=&	<=B
<=!	<=%

<=>	<=A
<=B	<=?

<=A	<=B
<=>	<=!

<=?	<=&
<=@	<=%

<=%	<="
<=!	<=&

Fig. 3: An example of CSCB format for column balanced block-wise
sparse matrix, where the block size is 2×2.

The column balanced block-wise pruning combines the

key features of both bank balanced pruning and block-wise

pruning. The column balanced block-wise pruning ranks the

blocks’ L2 norm by each column to get the pruning thresholds

and prunes blocks for each column. A detailed algorithm

for column balanced block-wise pruning is given in the next

section. By combining the CSB format and BCSR format,

a Compressed Sparse Column Block (CSCB) is formed. An

example of the CSCB format is shown in Fig. 3. Only one

index pointer for each block is needed, which leads to a

much lower memory consumption than the previous sparse

matrix pattern. Moreover, the column balanced block-wise

pruning enables both inter-block and intra-block parallelism

for efficient hardware design. The hardware design details are

revealed in later sections.

B. Column Balanced Block-wise Pruning Algorithm

We propose a column balanced block-wise weight pruning

algorithm, where column balanced is achieved by pruning the

same number of block column elements in each column of

weight matrices, which are weights of linear layers with the

shape of 2-D for transformer model in our experiments.

Algorithm 1: Column balanced block-wise weight

pruning algorithm.

1 Input: weight matrix W , matrix width n, matrix height m,
block row r, block column c, percentile perc

2 Output: pruned weight matrix W p

3 Set W p = W
4 Set column division j = n / c, row division j′ = m / r
5 Divide W p into j matrices: W 1,W 2,...,W j

6 foreach W i in W 1,W 2,...,W j do
7 Divide W i into j′ matrices
8 Calculate l2 norm of each block
9 Setting the value in perc of the lowest l2 norm of blocks

of W i as zero
10 end
11 W p = concatenate(W 1,W 2,...,W j)

We denote weight matrix as W with width n and height m
while row size and column size of pruning block are denoted

by r and c respectively and perc is the percentile of weights

will be excluded within W . Algorithm 1 illustrates column

balanced block-wise weight pruning method. We (a) first

divide a Transformer weight matrix into j sub-matrices where

j = n/c. (b) For each sub-matrix W i, we divide it into j′ sub-

matrices where j′ = m/r and j × j′ blocks with size of r by

c are generated in this step. (c) We calculate l2 norm of each

block. (d) For each W i, we set the value of perc of blocks

with lower l2 norm to zero. (e) Finally, we concatenate the

resulting sub-matrices W 1,W 2,...,W j horizontally to form

the pruned matrix W p.

IV. TRANSFORMER ACCELERATOR DESIGN

Most of the Transformer model, even the one with some

shallow encoder and decoder layers, is too large to fit into

the FPGA on-chip block RAM (BRAM). Thus, the model

compression technique is needed to compress the model size

and fit it into the existing FPGA devices. The hardware design

for compressed matrix operation is a great challenge, and it

directly determines how much speedup we can achieve on

hardware design. The embedding layer is normally a lookup

table, and it contributes 30% of parameters, so it’s loaded into

external memory instead of on-chip BRAM.

In this section, we first come up with holistic hardware

architecture for the Transformer hardware accelerator. Then we

dive into details of the sparse matrix multiplication accelerator

as well as the encoder framework. We aim to reduce the

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

inference latency by add more hardware parallelism and enable

the efficient pipeline on the hardware data flow.

A. Overall Hardware Architecture

As shown in Fig. 4, the hardware architecture of the

Transformer is composed of the host PC which is in charge of

generating and sending the tokenized sentence, the off-chip

DDR memory and its’ controller for the embedding layer,

and the FPGA accelerator for encoders and decoder layer. As

mentioned in the previous section, our transformer model is

composed of 2 layers of encoders and 1 layer of the decoder.

The decoder is simply a linear layer that takes the encoder’s

input and generates the final output. The hardware resources

for the encoder can be reused for different layers. However,

we only have 2 layers of the encoder, so hardware resources

re-utilization is not necessary.

F��,	
G����H

F��,	
���

����

F��,

J��������	
��H��

CCK	
���,������

CKLG

G����H	��,��M���

KLG

J������	
��������,��	�,����

N�PL

KLG

C������	
��������,��

Fig. 4: Overall structure of the Transformer accelerator

The hardware data flow is as follows. Firstly, the host PC

generates the tokenized sentence and sends it to FPGA through

the PCIe interface. Then, the DDR controller will fetch the

embedding from DRAM for each word of the input sentence.

The word embedding sequence is then fed into FPGA on-chip

resources for encoders and decoder inference.

B. Sparse Matrix Multiplication Accelerator Design

The sparse matrix multiplication accelerator design is shown

in Fig. 5. The compressed sparse matrix is stored in CSCB

format, and there are 2 matrices need for CSCB format; one

is the data matrix, and one is the indices pointer matrix. Each

of the indices pointer matrix element indicates the original

location of the block in the data matrix. To exploit hardware

parallelism, we design a processor element (PE) for each

task, and multiple PEs can be used in parallel to increase the

hardware bandwidth.

The PE design is as follows. For each PE shown in Fig.

5, it will have one copy of the single row of the dense

matrix input as register buffer array. And for each operation,

the PE will use the indices pointer to fetch two inputs: a

single bank from dense matrix row and a whole data block

from the compressed sparse matrix. After the data fetching

procedure, a dense general matrix multiply (GEMM) can be

performed within the PE. The GEMM accelerator design has

already been exploited in the previous work [23], and we

can follow the basic procedure to design a highly paralleled

GEMM hardware accelerator. Lastly, the GEMM result will

���
������	R
����	
��,��;

�������	
���,��

<					"					<

&					&					"

R�����	���	�M	
�����	��,��;

<="	<=>
<=%	<=!

<=&	<=B
<=!	<=%

<=>	<=A
<=B	<=?

<=A	<=B
<=>	<=!

<=?	<=&
<=@	<=%

<=%	<="
<=!	<=&

<=%	<=!	<=?	<=&	<=B	<="	

<=%	<=! " <="	<=>
<=%	<=!

"<=B	<="
<=&	<=B
<=!	<=%

L�������	T��,��	������,�

<=?	<=& "

"<=B	<="

���	< ���	" ���	&

���	&

���	< <=>	<=A
<=B	<=?

<=A	<=B
<=>	<=!

"

"

<=?	<=&
<=@	<=%

<=%	<="
<=!	<=&

L�������,� L�������,� L�������,�

<=%	<=!

<=?	<=&

���	"

���	& ���	"

���	<

�����,���,�

���
��,�	��,	
�����,

�J	< �J	" �J	&

Fig. 5: Dot product accelerator for sparse matrix with column
balanced block-wise sparsity pattern

be accumulated to obtain the final output. Inside the PE, the

data fetching, GEMM, and accumulation processes execute

in serial with an elaborate pipeline structure. It will iterate

over the entire block column of the compressed sparse matrix

to obtain the final output. To increase data throughput and

enable intra-block parallelism, multiple PEs can be used in

parallel. With multiple PEs, the BRAM memory partition of

the compressed sparse matrix is required to aid the parallel

computation. After each PE finished accumulation and iterates

over the entire compressed sparse matrix, the result can be

concatenated together to generate the final dot product output.

The PE design concept can be applied to both FPGA hardware

design and GPU kernel design.

C. Encoder Accelerator Structure

The overall structure of a single encoder layer is shown

in Fig. 6. The encoder layer comprises a 4 sparse matrix dot

product accelerator, an activation layer, 4 dot product attention

hardware blocks for 4 heads, and 2 add normalization layers. 5

sparse weight matrices with their index matrices will be stored

in BRAM to speed up the computation.

The data flow of the encoder layer is as follows. The encoder

input X is firstly fed into the dot product accelerator to

calculate matrix Q K, and V , and the accelerator output is

fed into dot product attention hardware. The output matrices

of the dot product attention are then concatenated into a single

matrix Z. Z is fed into another dot product accelerator and

generate matrix At. The matrix At is then passed through

an add normalization layer, and the result is stored in the

matrix Nr1. Again, the matrix Nr1 is fed into a special design

dot product accelerator for two matrix multiplication and one

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

J������	��
�,

C�,	
�����,	��������,��	
M��	�
����	��,��;

X

Q
C�,	
�����,	�,,��,���

===

KLG	�Wq, Wk, Wv�

�����,���,�

K

V

===

C�,	
�����,	��������,��	
M��	�
����	��,��;

Z

KLG	�Wo�

L��	���������,���

#�
��$%����
���������

C�,	
�����,	��������,��	
M��	�
����	��,��; AtNr1

KLG	�FW1, FW2 �

L��	���������,���
FF2

����	������&���	�����
�		�
������J������	��,
�,

Xo

� � ��
�

�
T

i i
i k

Q KT softmax mask
d

� �i i iZ T V

� �t oA Z W

" � �� � tNr Norm X A" " "� �� �FF Activation Nr FW
" &� �� �oX Norm Nr FF

& " &� �FF FF FW

q

k

v

Q X W
K X W
V V W

� �

� �
� �

Fig. 6: Encoder structure

activation function. In our design, we are using RELU for the

activation function. The dot product accelerator output FF1

is fed into another add normalization layer and generates the

final output Xo.

D. Resource Scheduling

To allocate a reasonable amount of resources for each

function, we adopt operation scheduling methods [24] for

hardware design. The optimization task goal is:

min
{Wn},{bn}

min(T1, T2, ...Tk)

subject to Rt ≥ M

k∑

i=1

Ri +Rm

(2)

In the function, Rt = [RDSP , RFF , RLUT , RBRAM] is the

total available resource on FPGA chip. Ri is the resource used

by each function with an encoder/decoder. Rm is the resource

used by the DDR controller, PCIe controller, or other types

of miscellaneous function within the FPGA system. We firstly

begin with a hardware design without any parallelism. Then

we start to add hardware parallelism to the slowest function

or loop and check the resource constraint. If the resource

constraint is satisfied, we will add hardware parallelism to

the slowest function or loop and do it over until the hardware

resources and latency are optimized.

V. EXPERIMENTS

A. Training of the Transformer Model

We conduct our experiment using the Transformer model

on Wikitext-2 dataset [25], on which we use the accuracy

of next word prediction for the benchmark. The Transformer

model illustrated in the paper is a shallow well pre-trained,

and unpruned model in Pytorch and GPU version, and it has

two encoder layers and one decoder layer with hyperparam-

eters of embedding layer size (emsize)=800 and number of

hidden layer dimension (nhid)=200. The decoder layer of the

Transformer is a fully connected layer with a 28,785 output

dimension. In the experiment, we are using 32 as our batch

size for both training and inference.

The Transformer model training is conducted on 4 RTX

2080Ti GPU servers (each with 4 or 8 GPUs). Experiments

are implemented using python 3.6.10, GCC 7.3.0, PyTorch

1.4.0, and CUDA 10.1.

���

���

���

���

A
cc

ur
ac

y

Overall pruning ratio

�����
���

Fig. 7: Accuracy of transformer model at different pruning ratio using
column balanced block-wise pruning method, two different block
sizes (16*16 and 4*4) are compared

We first run 50 training epochs for training and obtain the

model with the best accuracy as our pre-trained model. We

load the pre-trained model and run 50 epochs iteration of

admm-based training [26], pruning and retraining. For admm-

based training, we set the initial learning rate as 3.0 and admm

epoch as 9 and adjust the learning rate periodically. To be more

specific, if the epoch is dividable by admm epoch, we reset

the learning rate to the original one. Otherwise, we decay the

learning rate every 1/3 admm epoch. For pruning, we set the

prune ratio between 0 to 1 and employ the column balanced

block-wise pruning method to prune the former trained model.

Finally, we retrain the pruned model. For the prune ratio, we

first set it in the range of 0 to 0.9 with an interval of 0.1. As

we could easily observe from Fig. 7, there is little accuracy

drop with the increasing prune ratio in this region with both

block sizes. To find the turning point or the ”sweet spot”, we

further explored the accuracy and sparsity curve between 0.9

to 1 with a smaller interval of 0.02. We finally choose prune

ratio = 0.9 as the operation point, where the model has a high

pruning ratio with a low accuracy drop. And at this point,

the Transformer model with 16*16 block size has accuracy =

0.9512, comparable to accuracy = 0.9535 for 4*4 block size.

B. Hardware Performance

1) Hardware Platform: The Xilinx Alveo U200 board,

which has 4,320 of 18k BRAM, 6,840 DSPs, and 1,882.2k

logic cells (LUT), is used in the experiment. The FPGA

board is connected with the host machine through PCIe for

fetching the input word with 18 batch size. Xilinx SDX

2020.1 and the high-level synthesis tool (C/C++) are used for

hardware development. The hardware inference performance

is compared between Intel i5-5257U(2.7 GHZ) CPU, Nvidia

Jetson TX2 GPU, and Xilinx Alveo U200 FPGA platforms

for latency and throughput (frame/sequence per second). The

batch size is chosen as 32 for both platforms for fairness

comparison.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

2) Resource Scheduling: We apply the hardware resource

scheduling concept from section IV-D to increase the hardware

throughput. The hardware scheduling results of each operation

(e.g., Matrix Multiplication (MM), dot product attention, add

normalization) in encoder and decoder are shown in Table I.

TABLE I: Resource scheduling for the Transformer on FPGA (prune
ratio = 0.9, block size = 16*16 and batch size = 32)

DSP FF LUT Latency

Total hardware resources 6,840 2,364.5k 1,882.2k N/A

Encoder DSP FF LUT Latency
Sparse MM accelerator 1 331 150.4k 150.8k 1.152 ms
Dot product attention × 4 292 59.6k 101.7k 0.554 ms
Sparse MM accelerator 2 168 23.3k 31.2k 0.704 ms

Add normalization 1 62 17.9k 18.3k 0.321 ms
Sparse MM accelerator 3 172 28.0k 26.1k 0.393 ms

Add normalization 2 62 17.9k 18.3k 0.321 ms
Resources for 1 encoder 1025 279.3k 389.3k 3.446 ms

Percentage 15.0% 11.8% 20.7% N/A

Decoder DSP FF LUT Latency
Sparse MM accelerator 4 1318 98.8k 83.3k 3.456 ms
Resources for 1 decoder 1318 98.8k 83.3k 3.456 ms

Percentage 19.3% 4.2% 4.4% N/A

We observe that through the developed resource scheduling

technique, we achieve high resource utilization, i.e., 49.3%,

27.8%, 45.8% for DSP, FF, LUT respectively. The resultant

latency is 3.446 ms and 3.456 ms for the single encoder and

decoder, satisfying the real-time requirements for various NLP

tasks on resource-constrained devices.

3) Cross Platform Comparison: After the resource schedul-

ing is done for each encoder/decoder layer, the Transformer

model can be combined from those layers. The final hardware

latency of the Transformer model implemented on FPGA is

10.35 ms for batch size = 32 and block size = 16*16. The

comparison of the Transformer model inference speed is made

for different platforms, and the result is shown in Table II.

TABLE II: Comparison between CPU and FPGA (prune ratio = 0.9,
block size = 16*16 and batch size = 32)

Hardware latency(ms) Throughput (FPS)
Intel i5-5257U (2.7 GHZ) CPU 113.40 282.2

Jetson TX2 GPU 21.54 1485.6
Xilinx Alveo U200 FPGA board 10.35 3091.8

As shown in the table, We achieve 10.95 × speed up on

FPGA comparing to CPU and 2.08 × speed up comparing

to GPU. The overall pruning technique and hardware design

concepts enable efficient Transformer neutral network accel-

eration on the FPGA platform.

VI. CONCLUSION

This paper introduces an efficient Transformer accelera-

tion framework for FPGA application. A column balanced

block-wise pruning method is proposed, which achieves low

accuracy decay under a high pruning ratio. A specialized

process element for sparse matrix multiplication is designed

to enable both inter block hardware parallelism and intra-

block parallelism, and it can be applied to both GPU and

FPGA devices. Then, the training process, as well as the

accuracy versus pruning ratio relationship, is demonstrated.

Finally, the hardware resource scheduling is done for the

Transformer model, and the inference latency is compared

between different hardware platforms. The overall framework

achieves a reduced NLP model size with only a little accuracy

drop, and the FPGA implementation achieves 10.95 × speed

up comparing to the CPU platform and 2.08 × speed up

comparing to the GPU platform.

REFERENCES

[1] K. Cho, B. Van Merriënboer, D. Bahdanau, and Y. Bengio, “On the
properties of neural machine translation: Encoder-decoder approaches,”
arXiv preprint arXiv:1409.1259, 2014.

[2] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, no. 8, pp. 1735–1780, 1997.

[3] A. X. M. Chang, B. Martini, and E. Culurciello, “Recurrent neu-
ral networks hardware implementation on fpga,” arXiv preprint
arXiv:1511.05552, 2015.

[4] E. Nurvitadhi, J. Sim, D. Sheffield, A. Mishra, S. Krishnan, and D. Marr,
“Accelerating recurrent neural networks in analytics servers: Comparison
of fpga, cpu, gpu, and asic,” in 2016 26th International Conference on
Field Programmable Logic and Applications (FPL). IEEE, 2016, pp.
1–4.

[5] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin, “Attention is all you need,” in Advances
in neural information processing systems, 2017, pp. 5998–6008.

[6] S. Han, H. Mao, and W. J. Dally, “Deep compression: Compressing
deep neural networks with pruning, trained quantization and huffman
coding,” arXiv preprint arXiv:1510.00149, 2015.

[7] W. Wen, C. Wu, Y. Wang, Y. Chen, and H. Li, “Learning structured
sparsity in deep neural networks,” in Advances in Neural Information
Processing Systems, 2016, pp. 2074–2082.

[8] X. Ma, F.-M. Guo, W. Niu, X. Lin, J. Tang, K. Ma, B. Ren, and Y. Wang,
“Pconv: The missing but desirable sparsity in dnn weight pruning for
real-time execution on mobile devices.” in AAAI, 2020, pp. 5117–5124.

[9] Z. Wang, J. Wohlwend, and T. Lei, “Structured pruning of large language
models,” arXiv preprint arXiv:1910.04732, 2019.

[10] Y. Guan, Z. Yuan, G. Sun, and J. Cong, “Fpga-based accelerator for long
short-term memory recurrent neural networks,” in Design Automation
Conference (ASP-DAC), 2017 22nd Asia and South Pacific. IEEE,
2017, pp. 629–634.

[11] C. Guo, B. Y. Hsueh, J. Leng, Y. Qiu, Y. Guan, Z. Wang, X. Jia, X. Li,
M. Guo, and Y. Zhu, “Accelerating sparse dnn models without hardware-
support via tile-wise sparsity,” arXiv preprint arXiv:2008.13006, 2020.

[12] S. Zheng, H. Lin, S. Zha, and M. Li, “Accelerated large batch optimiza-
tion of bert pretraining in 54 minutes,” arXiv preprint arXiv:2006.13484,
2020.

[13] J. Xin, R. Tang, J. Lee, Y. Yu, and J. Lin, “Deebert: Dynamic early ex-
iting for accelerating bert inference,” arXiv preprint arXiv:2004.12993,
2020.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training
of deep bidirectional transformers for language understanding,” arXiv
preprint arXiv:1810.04805, 2018.

[15] Y. Liu, M. Ott, N. Goyal, J. Du, M. Joshi, D. Chen, O. Levy, M. Lewis,
L. Zettlemoyer, and V. Stoyanov, “Roberta: A robustly optimized bert
pretraining approach,” arXiv preprint arXiv:1907.11692, 2019.

[16] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “Distilbert, a distilled
version of bert: smaller, faster, cheaper and lighter,” arXiv preprint
arXiv:1910.01108, 2019.

[17] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly et al.,
“An image is worth 16x16 words: Transformers for image recognition
at scale,” arXiv preprint arXiv:2010.11929, 2020.

[18] N. Carion, F. Massa, G. Synnaeve, N. Usunier, A. Kirillov, and
S. Zagoruyko, “End-to-end object detection with transformers,” arXiv
preprint arXiv:2005.12872, 2020.

[19] Z. Yao, S. Cao, W. Xiao, C. Zhang, and L. Nie, “Balanced sparsity for
efficient dnn inference on gpu,” in Proceedings of the AAAI Conference
on Artificial Intelligence, vol. 33, 2019, pp. 5676–5683.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

[20] S. Cao, C. Zhang, Z. Yao, W. Xiao, L. Nie, D. Zhan, Y. Liu, M. Wu,
and L. Zhang, “Efficient and effective sparse lstm on fpga with bank-
balanced sparsity,” in Proceedings of the 2019 ACM/SIGDA Interna-
tional Symposium on Field-Programmable Gate Arrays, 2019, pp. 63–
72.

[21] S. Han, J. Kang, H. Mao, Y. Hu, X. Li, Y. Li, D. Xie, H. Luo, S. Yao,
Y. Wang et al., “Ese: Efficient speech recognition engine with sparse
lstm on fpga,” in Proceedings of the 2017 ACM/SIGDA International
Symposium on Field-Programmable Gate Arrays, 2017, pp. 75–84.

[22] B. Li, S. Pandey, H. Fang, Y. Lyv, J. Li, J. Chen, M. Xie, L. Wan, H. Liu,
and C. Ding, “Ftrans: energy-efficient acceleration of transformers using
fpga,” in Proceedings of the ACM/IEEE International Symposium on
Low Power Electronics and Design, 2020, pp. 175–180.

[23] J. de Fine Licht, S. Meierhans, and T. Hoefler, “Transformations of high-
level synthesis codes for high-performance computing,” arXiv preprint
arXiv:1805.08288, 2018.

[24] S. Wang, Z. Li, C. Ding, B. Yuan, Q. Qiu, Y. Wang, and Y. Liang, “C-
lstm: Enabling efficient lstm using structured compression techniques
on fpgas,” in Proceedings of the 2018 ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays, 2018, pp. 11–20.

[25] S. Merity, C. Xiong, J. Bradbury, and R. Socher, “Pointer sentinel
mixture models,” in 5th International Conference on Learning Repre-
sentationsICLR, 2017.

[26] T. Zhang, S. Ye, K. Zhang, J. Tang, W. Wen, M. Fardad, and Y. Wang,
“A systematic dnn weight pruning framework using alternating direction
method of multipliers,” in Proceedings of the European Conference on
Computer Vision (ECCV), 2018, pp. 184–199.

Authorized licensed use limited to: Stevens Institute of Technology. Downloaded on August 09,2021 at 22:42:31 UTC from IEEE Xplore. Restrictions apply.

