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Abstract
Concepts embody the knowledge to facilitate our
cognitive processes of learning. Mapping short
texts to a large set of open domain concepts has
gained many successful applications. In this paper,
we unify the existing conceptualization methods
from a Bayesian perspective, and discuss the
three modeling approaches: descriptive, generative,
and discriminative models. Motivated by the
discussion of their advantages and shortcomings,
we develop a generative + descriptive modeling
approach. Our model considers term relatedness
in the context, and will result in disambiguated
conceptualization. We show the results of short
text clustering using a news title data set and
a Twitter message data set, and demonstrate the
effectiveness of the developed approach compared
with the state-of-the-art conceptualization and topic
modeling approaches.

1 Introduction
Short text conceptualization is a task to map a piece of
short text to a large set of open domain concepts with
different granularities.1 Since short texts are usually lack
of context, mapping short texts to concepts can help better
make sense of text data, extend the texts with categorical or
topical information, and facilitate many applications. For
example, it has been verified very useful for word/phrase
similarity/relatedness measure [Gabrilovich and Markovitch,
2007; Li et al., 2013; Agrawal et al., 2014], short text
categorization [Gabrilovich and Markovitch, 2006; Wang
et al., 2014], Twitter messages clustering [Song et al.,
2011], search relevance measurement [Egozi et al., 2011;
Song et al., 2014], search log mining [Hua et al., 2013],
advertising keywords semantic matching [Liu et al., 2012;
Kim et al., 2013], and dataless text classification by label
understanding [Chang et al., 2008; Song and Roth, 2014;
2015].

1In this paper, we focus on the explicit concept mapping
approaches. For more comparisons of explicit and latent semantic
analysis for text representation, please refer to [Huang et al., 2012;
Song and Roth, 2014] for more details.

Typical concept mapping methodologies include the so
called probabilistic conceptualization [Song et al., 2011]
and explicit semantic analysis (ESA) [Gabrilovich and
Markovitch, 2009]. We first briefly review the two models
as follows.

Probabilistic conceptualization: Given a set of terms
(words or multiple-word expressions) E = {e1, . . . , eM}
in a short text2, probabilistic conceptualization tries to find
the concepts associated with scores that can best describe the
terms. Suppose we have a general and open domain concept
set C = {c1, . . . , cT }. In probabilistic conceptualization,
it makes the naive Bayes assumption of the conditional
probabilities and uses

P (ct|E) = P (E|ct)P (ct)/P (E) ∝ P (ct)
∏M

m=1
P (em|ct)

(1)
as the score associated with ct. Here, P (em|ct) = n(em,ct)

n(ct)

where n(em, ct) is the co-occurrence frequency of concept ct
and term em in the sentences used by information extraction,
and n(ct) is the overall number of concept ct. Moreover,
P (ct) = n(ct)∑

t n(ct)
is normalized by the number of all the

concepts in C. The basic assumption behind this model is
that given each concept ct, all the observed terms em ∈ E
are conditionally independent. Then it uses the probability
P (ct|E) to rank the concepts and selects the concepts with
the largest probabilities to represent the text containing the
terms in E. However, this has a major drawback:

• Naive Bayes will quickly boost the concepts co-occurred
with all the observed terms in the short text due to
the multiplication term

∏M
m=1 P (em|ct), and dismiss

the concepts partially matching the terms. In
particular, in some extreme cases, only the general
and vague concepts, e.g., topic or thing, can be
retrieved co-occurring with all the terms, whereas, the
partially matched concepts would be more specific and
descriptive to represent the text.

Explicit semantic analysis (ESA): ESA simply combines
the weighted concepts of each term in a short text. We use
em = (em,1, ..., em,T ) ∈ RT+ to represent the concept vector

2Parsing short text to be words or multi-word expressions can
be non-trivial [Song et al., 2014]. We ignore this since it is not the
focus of this paper.
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Table 1: A comparison of the union and intersection methods.

apple and microsoft obama’s real-estate policy
Intersection company, brand, manufacturer, ... topic, thing, issue, term, example, ...
Union company, brand, manufacturer, fruit, juice, ... president, politician property, asset, plan, ...

of the term em. For example, we can set em,t = f(n(em, ct))
as a function of the co-occurrence of the term em and ct.
In the original ESA, it uses TF-IDF (term frequency-inverse
document frequency) score of em shown in the t-th Wikipedia
page, which is denoted as a concept ct. We use a vector c =
(c1, ..., cT ) ∈ RT+ to denote the concept proportion that can
describe the whole short text containing E = {e1, . . . , eM}.
Then ESA recalls the concepts with scores as this:

c =
∑M

m=1
wmem, (2)

where wm is the weight associated to em, e.g., the TF-IDF
score of em in the short text. The benefit of using this
representation is that the values in the concept vectors em
are not restricted to the co-occurrence frequencies, but can be
arbitrarily tuned. However, it is still not without problems:
• The resulting concept vectors can be noisy. For example,

for the text “microsoft unveils office for apple’s ipad,”
we all know that in this context “apple” should not be a
fruit. However, simply adding em will also introduce
fruit as a concept to describe the text. The backend
intuition of this computation is that it assumes that there
is only one term cluster in the short text, and uses the
(weighted) mean of concept vectors, which is the center
of the terms in concept vector space, to represent the
text, regardless the sense of the word. Particularly, sense
disambiguation is more serious for short texts such as
tweets and search queries, since with more words, the
impact of the ambiguous concepts will be reduced as less
significant.

We can use two operations to illustrate the results of
probabilistic conceptualization and ESA: intersection used
by probabilistic conceptualization and union used by ESA.
In Table 1 we see that intersection of concepts for “obama”
and “real-estate policy” will get topic, thing, issue, etc.,
while union of the concepts for “apple” and “microsoft” will
have concepts such as fruit but not correct to represent their
meaning. Thus, intersection of different concept sets will
sharpen the meaning of the representation, while union will
broaden the meaning. When the terms in a short text are
related, intersecting the concepts can help us disambiguate
them. However, when the terms are not related, intersection
will get only very general or vague concepts.

Given the above analysis that both approaches are with
modeling shortcomings for short text conceptualization, in
this paper we propose an approach that can incorporate both
intersection and union operations. The contributions of this
paper can be summarized as follows.
• We show how existing conceptualization approaches

can be reformulated as descriptive, generative and
discriminative models in a framework. This is the first
attempt to unify different short text conceptualization
methods.

• We introduce a generative + descriptive modeling
approach under the framework for short text
conceptualization and demonstrate its effectiveness
using a news title data set and a Twitter message data
set in the experiments.

2 Descriptive, Generative, and Discriminative
Modeling

To summarize from the modeling perspective, analogous to
the image conceptualization frameworks discussed in [Zhu,
2003], we also introduce and analyze three ways to perform
short text conceptualization as: descriptive, generative
and discriminative models. In the descriptive and
generative models, we consider to model the probability
P (e1, ..., eM |c). In the discriminative model, we consider
directly modeling the probability P (c|e1, ..., eM ).

Descriptive Model (Causal Markov Model): The
probabilistic conceptualization can be regard as a simple
causal Markov model, since it imposes the partial order
of the probabilities of concept-term relationship. We
first assume the conditional independency of em given
c: P (e1, ..., eM |c) = ΠM

mP (em|c). Then we define
P (em|c) ∝ ΠT

t P (em,t|P (em|ct)) = ΠT
t P (em|ct)em,t as

a multinomial distribution where P (em|ct) is calculated
based on the evidence of co-occurrence in knowledge base
(explained under Eq. (1)). We define em,t = 1 if for this trial
ct is selected as the description of the short text and em,t′ = 0
for t′ 6= t. Now we can factorize P (e1, ..., eM |c) as:

P (e1|c1)e1,1 · ... · P (e1|cT )e1,T · ... · P (eM |cT )eM,T , (3)

By incorporating the prior P (c) ,
∏T
t=1 P (ct), we can

re-write the posterior of c:
P (c|e1, ..., eM ) ∝ P (e1, ..., eM |c)P (c) (4)

=
∏T

t=1
P (ct)

∏M

m=1
P (em|ct)em,t .

Then selecting the top k concepts using Eq. (1) among all
the T concepts can be considered as the maximum a posterior
(MAP) estimation of this posterior in Eq. (4). This illustrates
what probabilistic conceptualization really optimizes. Thus,
if one of the probability P (em|ct) equals to zero, then the
whole probability P (c|e1, ..., eM ) equals to zero. Even if
a smoothing technique can be applied [Song et al., 2011],
the probability mass P (c|e1, ..., eM ) could be too small to be
reasonable in this case.

Generative Model: ESA can be regarded as a generative
model since it uses the concept-term relationship as the
evidence of generated features of terms, and estimates the
latent concept distribution which generates the features. If
we formulate the probability P (e1, ..., eM |c) as:

P (e1, ..., eM |c) =
∏M

m=1
P (em|c) (5)

∝
∏M

m=1
exp{−||em − c||2},
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where P (em|c) is assumed to be a Gaussian distribution
centered by the underlying concept distribution c. Then c =
1
M

∑M
m=1 em is the maximum likelihood estimate with the

probability P (e1, ..., eM |c). Here P (em|c) is more flexible
and not necessarily to be factorized as ΠT

t P (em|ct). For
example, em,t (t = 1, ..., T ) in the concept vector em can
be the co-occurrence frequency of concept ct and term em
in the same sentence or same document. We can also define
em,t , P (ct|em) which is the typicality of a concept ct to
describe the term em, or P (em|ct), which is the typicality of
how much a term em can instantiate the concept ct.

The formulation in Eq. (5) also explains why explicit
semantic analysis assumes that there is only one cluster of
the terms observed in the short text. A natural way to extend
this is to perform clustering by assuming there are multiple
clusters of concept vectors. However, there is still problem
if we do not consider the concept intersection problem inside
term clusters, since the computation of a cluster center is the
average of all the vectors to represent the terms inside the
cluster. In this case, the ambiguous concepts will still show
up in the final representation.

Discriminative Model: Yet another way for
conceptualization is to classify the short text onto a
predefined taxonomy or ontology. Classification can be
regarded as the discriminative model which wants to estimate
c by directly modeling the probability P (c|e1, ..., eM ). For
example, we can learn (or simply find) a set of projection
vectors wt, t = 1, ..., T , to project the observed text to
maximize P (ct|wt, e1, ..., eM ) = 1

Z f(wt, g(e1, ..., eM )),
where the concept vector is considered as a feature vector
to generate the representation of the short text. A typical
g(e1, ..., eM ) can be 1

M

∑M
i=m em (more representations can

be found in [Song and Roth, 2014]). Since discriminative
model is costly when the number of concepts is large (e.g.,
millions of concepts) and thus is not the focus of this
paper, we do not expand this direction and leave for further
development and comparison.

We can see that both the simple descriptive and generative
approaches factorize the probability as

∏M
m=1 P (em|c),

which do not consider the relationships between em’s.
In the following section we introduce a generative +
descriptive model that tries to jointly model P (e1, ..., eM |c)
to incorporate the relationships between terms with more
descriptive power.

3 Generative + Descriptive Conceptualization
In this section, we introduce our generative + descriptive
conceptualization model. We incorporate the term
relationships into the generative model, and formulate
it as a Markov random field (MRF). Then we regard
conceptualization as the latent variable inference problem of
the MRF model.

3.1 Graphical Model
Since terms can be used to disambiguate each other if they
have relationships, we want to break the i.i.d. assumption
used by the above descriptive or generative models which
factorize the conditional joint probability as

∏M
m=1 P (em|c).

We introduce a graph built on the terms E = {e1, . . . , eM}
and introduce an energy function for each maximal cliques in
the graph.

Intuitively, if a short text contains both “apple” and
“microsoft,” then the importance of concept “company” will
be larger and the concept “fruit” is not an appropriate concept
to describe both terms. We introduce the probability of
P (concept vector of {apple,microsoft}|c) to remove
the ambiguity. Particularly, we represent the feature of tth
concept related to “apple” and “microsoft” as Ī0(eapple,t) ·
Ī0(emicrosoft,t) · (eapple,t + emicrosoft,t), where Ī0(x) =
1 if x 6= 0 and Ī0(x) = 0 if x = 0. In this case,
only their common concepts are considered. The common
concept detection for related terms then corresponds to the
intersection mechanism.

Formally, to introduce the relationship between observed
terms in a generative model, we build an undirected graph
to describe them, and factorize the joint probability based
on its maximal cliques. An example graphical model is
shown in Figure 1(a). If we have parsed terms e1, . . . , eM
in a short text, and detected the relationships between e1,
e2, and e3, then in the graphical model, we have a maximal
clique: {e1, e2, e3}. In this case, instead of mapping the
single terms to concepts, we map the cliques to concepts. We
also denote α = (α1, ..., αT ) ∈ RT+ as the hyperparameter
of the prior of the concept distribution c. In the following,
we first show how to formulate the concept vectors em’s,
and then show how to parameterize the joint probability
PΦ(α, c, {em}Mm=1, {πm}Mm=1).

Concept Vector for Each Term
We use Probase [Wu et al., 2012] here as the knowledge base
to demonstrate the conceptualization framework. Probase
uses an automatic and iterative procedure to extract concept
knowledge from 1.68 billion Web pages [Wu et al., 2012].
It contains 2.36 millions of open domain concepts, and
provides around 14 millions relationships with two kinds of
important knowledge related to concepts: concept-attribute
co-occurrence and concept-instance co-occurrence.3 When
we detect a term em in a short text, we introduce a type
indicator πm to indicate whether em is an attribute (πm = 0)
or an instance (πm = 1). Then the concept vector em ∈ ZT+
representing em is defined as:

em =

{
A·,em if πm = 0
B·,em if πm = 1

. (6)

We denote A ∈ ZT×V+ is the concept-attribute co-occurrence
matrix, where V is the number of distinctive instances and
attributes in the knowledge base. The (t, v)-th entry At,v is
an integer representing the co-occurrence count of concept t
and attribute v, andA·,em is the em’s column of A. Similarly,
B ∈ ZT×V+ is the concept-instance co-occurrence matrix.

Ideally, the graphical model is a mixture model and
{πm}Mm=1 should be regarded as hidden variables. We need to
apply the expectation-maximization (EM) algorithm to infer
{πm}Mm=1 and combine A·,em and B·,em to generate em.
However, considering that there are only less than 0.1% terms

3The data are available at http://probase.msra.cn/.
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(a) Conceptualization of one short text. (b) Corpus adaptation.

α

c

e1 e2 e3 ... eM

π1 π2 π3 ... πM

c ∈ RT+
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c(n)

e
(n)
1 e

(n)
2 e

(n)
3 ... e

(n)

M(n)

π
(n)
1 π

(n)
2 π

(n)
3 ... π

(n)

M(n)

c(n) ∈ {c(1), ..., c(N)}

Figure 1: Partially directed graphical models for short text conceptualization. em and e
(n)
m represent the concept vector of a

term. c and c(n) represent the concept distribution to generate the short text. α is the hyper-parameter.

in Probase which can act as both instances and attributes, it is
not worth using EM in most of the cases. We therefore use the
following heuristic rules to determine a term’s concept vector:
(i) attribute seldom appears alone: if a term is not related
to any other terms, it is invariably an instance; (ii) mutually
exclusive: if a term acts as an attribute in a sentence, then it
cannot act as an instance simultaneously. Then we compute
{πm}Mm=1 in advance and simply treat them as observed
variables. In the following sub-section, we will show how
to determine the relationships between terms.

Clique Detection
We define r(i–i)(ei, ej) to measure the strength of the
instance–instance relationship, which is defined as the
cosine similarity between two vectors B·,ei and B·,ej :

r(i–i)(ei, ej) =
BT
·,ei

B·,ej
||B·,ei ||·||B·,ej ||

. The strength of the

instance–attribute relationship r(i–a)(ei, ej) is similarly
defined by using B·,ei and A·,ej . Note that other metrics
or data sources to compute the term relatedness can be
applied [Gabrilovich and Markovitch, 2007; Li et al., 2013;
Huang et al., 2012]. Here we only use this simplest
implementation to demonstrate the framework. Given a
tolerance τ , an edge between ei and ej is introduced if
r(ei, ej) , max

{
r(i–i)(ei, ej), r

(i–a)(ei, ej), r
(i–a)(ej , ei)

}
≥ τ ;

(7)
otherwise ei and ej are not linked. For example, if both

“apple” and “microsoft” appear in the short text, we will build
an edge between them since the similarity is large. Another
example is if “population” co-occurs with “new york city,”
then population is regarded as an attribute since the concept
vector for attribute “population” (concepts are country, city,
location, region, etc.) has much larger similarity than
the concept vector of instance “population” (concepts are
geographical data, data, information, etc.) with the concept
vector of “new york city.”

Factorization
Suppose there are K maximal cliques, which cannot be
extended by including any one more adjacent em representing
em. Let Ik be the set of indices of those terms in the k-th
maximal clique, and Ek = {em, πm}m∈Ik . Then Ek∪{c} is a
maximal clique of the moralized graph [Koller and Friedman,
2009]. We factorize the joint distribution as:

PΦ(α, c, {em}Mm=1, {πm}Mm=1) =
1

Z
φ(α, c)

∏K

k=1
φ(Ek, c),

(8)
where Z is the partition function. We denote f(Ek) ∈ ZT+

be the feature vector of the clique which has a multinomial
distribution parameterized by c and ft(Ek) is the tth entry of
f(Ek). Then the factor φ(Ek, c) is defined as

φ
(
Ek, c

)
=
∏T

t=1
c
ft(Ek)
t (9)

where ft(Ek) = (
∏
i∈Ik Ī0(ei,t))·(

∑
j∈Ik ej,t), and Ī0(x) =

1 if x 6= 0; Ī0(x) = 0 if x = 0. The feature function ft(Ek)
sums the co-occurrence counts only if the related terms (i.e.,
in the same clique) all have this concept t; otherwise this
concept is discarded. For example, if “apple” and “microsoft”
appear together, concepts such as “fruit” will be filtered out.

Finally, we define a Dirichlet prior distribution
parameterized by α for the multinomial distribution
parameter c, i.e.,

φ(c,α) = P (c|α) =
Γ(
∑T
t=1 αt)∏T

t=1 Γ(αt)

T∏
t=1

cαt−1
t , (10)

which is a conjugate prior of multinomial distribution. If
we have no prior knowledge of which concepts are more
important, we can use symmetric α, i.e., all entries of α are
equal.

3.2 Latent Variable Inference: Conceptualization
Given the factorized joint probability distribution
PΦ(α, c, {em}Mm=1, {πm}Mm=1), we want to infer the
latent variable c by the MAP estimation. Since c is modeled
as a multinomial distribution to generate the concept vectors
for the maximal cliques, we can then use the inferred concept
distribution to describe short text. We can also call this
procedure as a probabilistic conceptualization.

Given Eqs. (8), (9) and (10), the posteriori of c over the
factors Φ =

{
φ(α, c)

}⋃{
φ(Ek, c)

}K
k=1

can be rewritten as

PΦ(c|α, {em}Mm=1, {πm}Mm=1)) ∝
∏T

t=1
c
αt−1+

∑K
k=1 ft(Ek)

t .
(11)
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Given {πm}Mm=1 and α fixed, and {em}Mm=1 determined,
we maximize Eq. (11) w.r.t. c, and the solution is:

copt
t =

αt − 1 +
∑K
k=1 ft(Ek)∑T

t=1

(
αt − 1 +

∑K
k=1 ft(Ek)

) , ∀ t = 1, . . . , T . (12)

As a special case of (12), when the terms are
(assumed) independent, the solution is copt

t =(
αt − 1 +

∑M
m=1 em,t

)
/
∑T
t=1

(
αt − 1 +

∑M
m=1 em,t

)
,

∀ t = 1, . . . T . The solution copt has the following
explanations. If some terms are related with each other,
only their mutual concepts are summed. If all the terms are
independent, the concept distribution is proportional to the
sum of the co-occurrence count of the concept and each
term plus the prior. This results in a similar solution as
ESA. While ESA uses the maximium likelihood estimation,
which relates to P (e1, ..., eM |c), our solution uses MAP
estimation, which relates to P (c|α, e1, ..., eM ).

3.3 Hyperparameter Estimation: Corpus
Adaptation

The Dirichlet prior of concept distribution c is parameterized
by α. Larger αt indicates that concept t is more important
for all the short texts in a corpus. If the corpus is general, we
can use symmetric α. When the corpus is of several specific
topics such as “technology” and “business,” some concepts
such as “IT,” “company” and “industry” are more common
than the others. In this situation it is necessary to strengthen
the important concepts by setting the corresponding entries of
α large. For this reason, we provide a maximum likelihood
estimation method for learning the hyperparameter α based
on a corpus.

By integrating out c in PΦ(α, c, {em}Mm=1, {πm}Mm=1),
the resulting distribution over α is

P (α, {em}Mm=1, {πm}Mm=1) (13)

=
Γ(
∑T
t=1 αt)

Γ
(∑T

t=1(αt +
∑K
k=1 ft(Ek))

) T∏
t=1

Γ
(
αt +

∑K
k=1 ft(Ek)

)
Γ(αt)

.

As shown in Fig. 1(b), consider we are givenN short texts;
the m-th term parsed from the n-th text is denoted as e(n)

m

(e(n)
m as its concept vector), and πm

(n), E(n)
k are similarly

defined. Suppose the texts are i.i.d. with a common parameter
α, the log likelihood function of the N texts is

logP (α) ,
∑N

n=1
logP (α, {e(n)

m }M
(n)

m=1 , {π(n)
m }M

(n)

m=1 ).
(14)

The hyperparameter α can be learned on the corpus of the N
texts by the following fixed-point iteration:

αnew
t ←

αt
∑N

n=1

(
Ψ
(
αt+

∑K(n)

k=1 ft(E(n)
k

)
)
−Ψ(αt)

)
∑N

n=1

(
Ψ
(∑T

t=1(αt+
∑K(n)

k=1
ft(E(n)

k
))
)
−Ψ(

∑T
t=1 αt)

) ,
(15)

for t = 1, · · · , T, where Ψ(x) = d log(Γ(x))/dx is the
digamma function. The resulting α∗ maximizes the log
likelihood function (14). The proof is shown in [Minka,
2003].

4 Experiments
In this section, we show experiments on two short text data
sets to compare our method with existing conceptualization
methods.

News Title: We extract news titles from a news corpus
containing about one million articles searched from Web
pages. The news articles have been classified into topics. We
select six topics, i.e., company, disease, entertainment, food,
politician, and sports, to evaluate different approaches. We
randomly select 3,000 news articles in each topic, and only
keep the title field. We call this data set the News Title Data
Set. The average word count of the 18,000 news titles is 7.96.

Twitter: In this data set, the 4,542 tweets are in three
categories: company (1,205), country (1,747), and device
(1,590). The data in company category includes tweets
about microsoft, google, apple, etc. The data in country
category includes tweets about china, india, usa, japan, isreal,
canada, etc. The data in device category includes tweets
about kindle, iphone, xbox, etc. The average length of the
Tweets is 13.36 words. Tweets are more noisy than news
titles. For example, the tweets “Win an Amazon Kindle 3G
Wireless from @FreeLunched Quick and easy registration
at http://bit.ly/9fBuw4” and “Conker, Live and Reloaded -
XBox game #xbox” have no overlapped terms, but they
should be grouped together in this problem.

4.1 Methods and Settings
We first use each method to obtain concepts (or topics) of
each short text in the two data sets. Then we use the
concepts (or topics) as features and run spherical K-means
clustering [Dhillon and Modha, 2001] to evaluate each
method. To evaluate our method, we mainly compare
it with the bag-of-words approach weighted by TF-IDF
scores [Salton and McGill, 1983], LDA [Blei et al., 2003],
probabilistic conceptualization (Song et al. ’s approach [Song
et al., 2011]), and ESA [Gabrilovich and Markovitch, 2007],
since these approaches are most related to ours.

TF-IDF: TF-IDF represents each text data as
bag-of-words. A high weight will be given by a high
term frequency in the given document and a low document
frequency of the term in the whole text corpus. TF-IDF tends
to filter out common terms. For our test data sets, we first
remove about 400 stop words such as “the,” “of,” “good,” etc.
Then we compute TF-IDF of the words in each document
based on the given test corpus and use the TF-IDF scores as
features for clustering. TF-IDF is employed as a baseline of
the clustering experiments.

LDA: We use Gibbs sampling inference of LDA [Blei
et al., 2003] which is implemented by Mallet [McCallum,
2002] in this experiment. Two different methods are used
for training the topics.

1 We train LDA and test on the same short text data. Since
the two corpora are all of short texts, LDA works with
extremely sparse data. We set the topic number to be the
cluster number or twice the cluster number and report
the better of the two. This method is denoted as “LDA
#1.”

2 For the news data, we also train the LDA model on long
texts (the main body of the news) and test it on the
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Table 2: NMI scores of the clustering experiments on news title data set.
NMI TF-IDF LDA #1 LDA #2 ESA PROB. CONCEPT. G+D CONCEPT.
COMPANY VS. DISEASE 0.303±0.017 0.176±0.159 0.300±0.121 0.870±0.063 0.863±0.034 0.868±0.026
COMPANY VS. ENTERTAINMENT 0.257±0.046 0.055±0.047 0.301±0.175 0.233±0.221 0.646±0.044 0.798±0.027
COMPANY VS. FOOD 0.224±0.091 0.077±0.074 0.323±0.024 0.712±0.065 0.636±0.053 0.933±0.002
COMPANY VS. POLITICIAN 0.341±0.053 0.038±0.063 0.320±0.027 0.857±0.059 0.705±0.063 0.933±0.020
COMPANY VS. SPORT 0.188±0.104 0.159±0.137 0.213±0.036 0.573±0.163 0.726±0.072 0.814±0.020
DISEASE VS. ENTERTAINMENT 0.193±0.070 0.115±0.081 0.690±0.041 0.762±0.052 0.681±0.037 0.729±0.076
DISEASE VS. FOOD 0.188±0.065 0.084±0.091 0.708±0.006 0.813±0.049 0.671±0.092 0.677±0.076
DISEASE VS. POLITICIAN 0.362±0.057 0.119±0.099 0.763±0.036 0.948±0.003 0.671±0.056 0.951±0.010
DISEASE VS. SPORT 0.166±0.059 0.151±0.115 0.359±0.217 0.915±0.004 0.747±0.057 0.888±0.011
ENTERTAINMENT VS. FOOD 0.092±0.075 0.036±0.044 0.507±0.047 0.704±0.052 0.306±0.042 0.725±0.036
ENTERTAINMENT VS. POLITICIAN 0.320±0.082 0.080±0.063 0.665±0.101 0.673±0.079 0.386±0.098 0.922±0.008
ENTERTAINMENT VS. SPORT 0.172±0.090 0.080±0.057 0.170±0.114 0.281±0.167 0.364±0.060 0.850±0.008
FOOD VS. POLITICIAN 0.242±0.041 0.071±0.048 0.758±0.011 0.848±0.023 0.487±0.034 0.960±0.011
FOOD VS. SPORT 0.227±0.057 0.078±0.065 0.213±0.106 0.810±0.006 0.454±0.100 0.830±0.028
POLITICIAN VS. SPORT 0.355±0.027 0.136±0.122 0.216±0.035 0.950±0.004 0.453±0.022 0.916±0.014
AVERAGE 0.242±0.080 0.097±0.043 0.434±0.223 0.730±0.219 0.586±0.164 0.853±0.089

Table 3: NMI scores of the clustering experiments on Twitter data set.
TF-IDF LDA #1 ESA PROB. CONCEPT. G+D CONCEPT.

NMI 0.468±0.057 0.267±0.057 0.522±0.018 0.568±0.067 0.573±0.017

short texts. We use the body field of the news articles
corresponding to the titles for training. Each article has
several hundreds of words. The topic number is set to
be 10 or 20, and we report the better of the two. This
method is denoted as “LDA #2.”

ESA: We import the Wikipedia articles from the Wikipedia
dump.4 To improve ESA, we preprocess the Wikipedia
articles with the following rules. First, we remove the articles
less than 100 words and remove the articles less than 10 links.
Then we remove all the category pages and disambiguation
pages. Moreover, we move the content to the right redirection
pages. Finally we obtain about one millions Wikipedia
articles for indexing. We compute TF-IDF weights for word
concept pairs as presented in [Gabrilovich and Markovitch,
2007]. Top 1,000, 2,000, and top 10,000 concepts are used as
features for clustering, and we report the best.

Probabilistic Conceptualization (Probabilistic
Concept.): We implement the method [Song et al.,
2011] and the top 100, 200 and 400 concepts are used for
clustering respectively, and we report the best.

Generative + Descriptive Conceptualization (G+D
Concept.): We compute the concept distribution c for each
text, and use top 400 concepts in the clustering experiments.

4.2 Clustering Results
We use spherical K-means clustering on the concept (or topic)
vectors generated by each method. The spherical K-means
clustering results also depend on initialization (especially
when the data vectors are of high dimension). In this
experiment, we randomly initialize K-means and repeat
clustering five times to report the result with the lowest
objective function value. All the numbers reported is based
on 10 random trials (each trail is based on five random
initialization).

The clustering results for news title data are shown in
Table 2. The normalized mutual information (NMI) [Strehl
and Ghosh, 2002] scores are presented. In general, the

4http://en.wikipedia.org/wiki/Wikipedia:Database download

larger the NMI scores are, the better the clustering results
are. We report the results of pairwise category clustering
here to check the more detailed information. From the
results we can see that, LDA #1 performs worst because
it is trained on very sparse short texts, where there is no
enough statistical information to infer word topics. LDA #2
is better, but it still underperforms the three knowledge based
methods. We can also train LDA on a very large corpus,
e.g., Wikipedia, and can expect much better results. However,
training LDA on very large data set is much slower than the
knowledge extraction procedures used by ESA and Probase.
Sometimes ESA performs best, however, it does not show
significant improvement over our method. Contrarily, for the
problems ESA does not perform well, i.e., “Company vs.
Entertainment” and “Entertainment vs. Sport,” our method
works very well. Moreover, we can see that our method
significantly outperforms Song et al. ’s conceptualization
method.

For the Twitter data, since we are not able to find
appropriate long texts, LDA #2 is not performed. The
clustering results are shown in Table 3. We can see that the
results are consistent with the news title data set. Our method
performs the best and shows improvement over the compared
methods.

5 Conclusions
We have unified descriptive, generative, and discriminative
text conceptualization in a Bayesian perspective, and
discussed the advantages and problems respectively. To solve
the problems, we proposed a generative + descriptive solution
to short text conceptualization. The model incorporates
both union and intersection operations of the concept sets
for the terms detected in the short text, and results in
better conceptual descriptions. We use one news title data
set and one Twitter message data set to demonstrate that
clustering on our conceptualization results can outperform
the state-of-the-art conceptualization and topic modeling
approaches.
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