
Error Estimation for Randomized Least-Squares Algorithms via the Bootstrap

Miles E. Lopes 1 Shusen Wang 2 Michael W. Mahoney 2

Abstract
Over the course of the past decade, a variety of
randomized algorithms have been proposed for
computing approximate least-squares (LS) solu-
tions in large-scale settings. A longstanding prac-
tical issue is that, for any given input, the user
rarely knows the actual error of an approximate
solution (relative to the exact solution). Likewise,
it is difficult for the user to know precisely how
much computation is needed to achieve the de-
sired error tolerance. Consequently, the user often
appeals to worst-case error bounds that tend to
offer only qualitative guidance. As a more prac-
tical alternative, we propose a bootstrap method
to compute a posteriori error estimates for ran-
domized LS algorithms. These estimates permit
the user to numerically assess the error of a given
solution, and to predict how much work is needed
to improve a “preliminary” solution. In addition,
we provide theoretical consistency results for the
method, which are the first such results in this
context (to the best of our knowledge). From a
practical standpoint, the method also has consid-
erable flexibility, insofar as it can be applied to
several popular sketching algorithms, as well as
a variety of error metrics. Moreover, the extra
step of error estimation does not add much cost
to an underlying sketching algorithm. Finally, we
demonstrate the effectiveness of the method with
empirical results.

1. Introduction
Randomized sketching algorithms have been intensively
studied in recent years as a general approach to computing
fast approximate solutions to large-scale least-squares (LS)
problems (Drineas et al., 2006; Rokhlin & Tygert, 2008;
Avron et al., 2010; Drineas et al., 2011; Mahoney, 2011;

1Department of Statistics, UC Davis 2ICSI and De-
partment of Statistics, UC Berkeley. Correspondence to:
<melopes@ucdavis.edu>.

Proceedings of the 35 th International Conference on Machine
Learning, Stockholm, Sweden, PMLR 80, 2018. Copyright 2018
by the author(s).

Drineas et al., 2012; Clarkson & Woodruff, 2013; Woodruff,
2014; Ma et al., 2014; Meng et al., 2014; Pilanci & Wain-
wright, 2015; 2016). During this time, much progress has
been made in analyzing the performance of these algorithms,
and existing theory provides a good qualitative description
of approximation error (relative to the exact solution) in
terms of various problem parameters. However, in practice,
the user rarely knows the actual error of a randomized so-
lution, or how much extra computation may be needed to
achieve a desired level of accuracy.

A basic source of this problem is that it is difficult to trans-
late theoretical error bounds into numerical error bounds
that are tight enough to be quantitatively meaningful. For
instance, theoretical bounds are often formulated to hold
for the worst-case input among a large class of possible in-
puts. Consequently, they are often pessimistic for “generic”
problems, and they may not account for the structure that
is unique to the input at hand. Another practical issue is
that these bounds typically involve constants that are ei-
ther conservative, unspecified, or dependent on unknown
parameters.

In contrast with worst-case error bounds, we are interested
in “a posteriori” error estimates. By this, we mean error
bounds that can be estimated numerically in terms of the
computed solution or other observable information. Al-
though methods for obtaining a posteriori error estimates
are well-developed in some areas of computer science and
applied mathematics, there has been very little development
for randomized sketching algorithms (cf. Section 1.4). (For
brevity, we will usually omit the qualifier ‘a posteriori’ from
now on when referring to error estimation.)

The main purpose of this paper is to show that it is possible
to directly estimate the error of randomized LS solutions
in a way that is both practical and theoretically-justified.
Accordingly, we propose a flexible estimation method that
can enhance existing sketching algorithms in a variety of
ways. In particular, we will explain how error estimation
can help the user to (1) select the “sketch size” parameter,
(2) assess the convergence of iterative sketching algorithms,
and (3) measure error in a wider range of metrics than can
be handled by existing theory.



Error Estimation for Randomized Least-Squares Algorithms

1.1. Setup and Background

Consider a large, overdetermined LS problem, involving
a rank d matrix A ∈ Rn×d, and a vector b ∈ Rn, where
n� d. These inputs are viewed as being deterministic, and
the exact solution is denoted

xopt := argmin
x∈Rd

‖Ax− b‖2. (1)

The large number of rows n is often a major computational
bottleneck, and sketching algorithms overcome this obstacle
by effectively solving a smaller problem involving m rows,
where d� m� n. In general, this reduction is carried out
with a random sketching matrix S ∈ Rm×n that maps the
full matrix A into a smaller sketched matrix Ã := SA of
size m× d. However, various sketching algorithms differ
in the way that the matrix S is generated, or the way that
Ã is used. Below, we quickly summarize three of the most
well-known types of sketching algorithms for LS.

Classic Sketch (CS). For a given sketching matrix S, this
type of algorithm produces a solution

x̃ := argmin
x∈Rd

‖S(Ax− b)‖2, (2)

and chronologically, this was the first type of sketching
algorithm for LS (Drineas et al., 2006).

Hessian Sketch (HS). The HS algorithm modifies the
objective function in the problem (1) so that its Hessian
is easier to compute (Pilanci & Wainwright, 2016; Becker
et al., 2017), leading to a solution

x̆ := argmin
x∈Rd

{
1
2‖SAx‖

2
2 − 〈A>b, x〉

}
. (3)

This algorithm is also called “partial sketching”.

Iterative Hessian Sketch (IHS). One way to extend HS is
to refine the solution iteratively. For a given iterate x̂i ∈ Rd,
the following update rule is used

x̂i+1 := argmin
x∈Rd

{
1
2
‖Si+1A(x− x̂i)‖22 + 〈A>(Ax̂i − b) , x〉

}
,

where Si+1 ∈ Rm×n is a random sketching matrix that is
generated independently of S1, . . . , Si, as proposed in (Pi-
lanci & Wainwright, 2016). If we let t ≥ 1 denote the total
number of IHS iterations, then we will generally write x̂t to
refer to the final output of IHS.

Remark. If the initial point for IHS is chosen as x̂0 = 0,
then the first iterate x̂1 is equivalent to the HS solution x̆ in
equation (3). Consequently, HS may be viewed as a special
case of IHS, and so we will restrict our discussion to CS
and IHS for simplicity.

With regard to the choice of the sketching matrix, many
options have been considered in the literature, and we re-
fer to the surveys (Mahoney, 2011) and (Woodruff, 2014).

Typically, the matrix S is generated so that the relation
E[S>S] = In holds, and that the rows of S are i.i.d. ran-
dom vectors (or nearly i.i.d.). Conceptually, our proposed
method only relies on these basic properties of S, and in
practice, it can be implemented with any sketching matrix.

To briefly review the computational benefits of sketching
algorithms, first recall that the cost of solving the full least-
squares problem (1) by standard methods isO(nd2) (Golub
& Van Loan, 2012). On the other hand, if the cost of com-
puting the matrix product SA is denoted Csketch, and if a
standard method is used to solve the sketched problem (2),
then the total cost of CS isO(md2 +Csketch). Similarly, the
total cost of IHS with t iterations is O(t(md2 + Csketch)).
Regarding the sketching cost Csketch, it depends substan-
tially on the choice of S, but there are many types that
improve upon the naive O(mnd) cost of unstructured ma-
trix multiplication. For instance, if S is chosen to be a
Sub-sampled Randomized Hadamard Transform (SRHT),
then Csketch = O(nd log(m)) (Ailon & Chazelle, 2006;
Sarlós, 2006; Ailon & Liberty, 2009). Based on these con-
siderations, sketching algorithms can be more efficient than
traditional LS algorithms when md2 + nd log(m)� nd2.

1.2. Problem Formulation

For any problem instance, we will estimate the errors of
the random vectors x̃ and x̂t in terms of high-probability
bounds. Specifically, if we let ‖ · ‖◦ denote any norm on
Rd, and let α ∈ (0, 1) be fixed, then our goal is to construct
numerical estimates ε̃(α) and ε̂t(α), such that the bounds

‖x̃− xopt‖◦ ≤ ε̃(α) (4)

‖x̂t − xopt‖◦ ≤ ε̂t(α) (5)

each hold with probability at least 1− α. (This probability
will account for the randomness in both the sketching algo-
rithm, and the bootstrap sampling described below.) Also,
the algorithm for computing ε̃(α) or ε̂t(α) should be effi-
cient enough so that the total cost of computing (x̃, ε̃(α))
or (x̂t, ε̂t(α)) is still much less than the cost of computing
the exact solution xopt — otherwise, the extra step of error
estimation would defeat the purpose of sketching. (This cost
will be addressed in Section 2.3.) Since xopt is unknown
to the user, it might seem surprising that it is possible to
construct error estimates that satisfy the conditions above,
and indeed, the limited knowledge of xopt is the main source
of difficulty in the problem.

1.3. Main Contributions

At a high level, a distinguishing feature of our approach
is that it applies inferential ideas from statistics in order
to enhance large-scale computations. To be more specific,
the novelty of this approach is that it differs from the tra-



Error Estimation for Randomized Least-Squares Algorithms

ditional framework of using bootstrap methods to quantify
uncertainty arising from data (Davison & Hinkley, 1997).
Instead, we are using these methods to quantify uncertainty
in the outputs of randomized algorithms — and there do not
seem to be many works that have looked at the bootstrap
from this angle. From a more theoretical standpoint, another
main contribution is that we offer the first guarantees for
a posteriori error estimation in the setting of randomized
LS algorithms (to the best of our knowledge). Looking
beyond this setting, there may be further opportunities for
using bootstrap methods to estimate the errors of other ran-
domized algorithms. In concurrent work, we have taken
this approach in the distinct settings of randomized matrix
multiplication, and randomized ensemble classifiers (Lopes
et al., 2017; Lopes, 2018).

1.4. Related work

The general problem of error estimation for approximation
algorithms has been considered in a wide range of situa-
tions, and we refer to the following works for surveys and
examples: (Pang, 1987; Verfürth, 1994; Jiránek et al., 2010;
Ainsworth & Oden, 2011; Colombo & Vlassis, 2016). In
the context of sketching algorithms, there is only a hand-
ful of papers that address error estimation, and these are
geared toward low-rank approximation (Liberty et al., 2007;
Woolfe et al., 2008; Halko et al., 2011), or matrix multi-
plication (Sarlós, 2006; Lopes et al., 2017). In addition to
the works just mentioned, the recent preprint (Ahfock et al.,
2017) explores statistical properties of the CS and HS algo-
rithms, and it develops analytical formulas for describing
how x̃ and x̆ fluctuate around xopt. Although these formu-
las offer insight into error estimation, their application is
limited by the fact that they involve unknown parameters.
Also, the approach in (Ahfock et al., 2017) does not address
IHS. Lastly, error estimation for LS approximations can
be studied from a Bayesian perspective, and this has been
pursued in the paper (Bartels & Hennig, 2016), but with a
focus on algorithms that differ from the ones studied here.

Notation. The following notation is needed for our pro-
posed algorithms. Let b̃ := Sb ∈ Rm denote the sketched
version of b. If i = (i1, . . . , im) is a vector containing m
numbers from {1, . . . ,m}, then Ã(i, :) refers to the m× d
matrix whose jth row is equal to the ij th row of Ã. Simi-
larly, the jth component of the vector b̃(i) is the ij th com-
ponent of b̃. Next, for any fixed α ∈ (0, 1), and any fi-
nite set of real numbers C = {c1, . . . , ck}, the expression
quantile(c1, . . . , ck; 1 − α) is defined as the smallest ele-
ment ci0 ∈ C for which the sum 1

k

∑k
i=1 1{ci ≤ ci0} is at

least 1 − α. Lastly, the distribution of a random variable
U is denoted L(U), and the conditional distribution of U
given a random variable V is denoted L(U |V ).

2. Method
The proposed bootstrap method is outlined in Sections 2.1
and 2.2 for the cases of CS and IHS respectively. After the
method is presented in algorithmic form (for each case), we
give heuristic interpretations to explain why it works. The
formal analysis can be found in the proof of Theorem 1 in
the supplement (Lopes et al., 2018). Later on, in Section 2.3,
we discuss computational cost and speedups.

2.1. Error Estimation for CS

The main challenge we face is that the distribution of the
random variable ‖x̃− xopt‖◦ is unknown. If we had access
to this distribution, we could find the tightest possible upper
bound on ‖x̃ − xopt‖◦ that holds with probability at least
1− α. (This bound is commonly referred to as the (1− α)-
quantile of the random variable ‖x̃− xopt‖◦.)

From an intuitive standpoint, the idea of the proposed boot-
strap method is to artificially generate many samples of a
random vector, say x̃∗, whose fluctuations around x̃ are
statistically similar to the fluctuations of x̃ around xopt. In
turn, we can use the empirical (1−α)-quantile of the values
‖x̃∗ − x̃‖◦ to obtain the desired quantity ε̃(α) in (4).

Remark. As a technical clarification, it is important to
note that our method relies only on a single run of CS,
involving just one sketching matrix S. Consequently, the
bootstrapped vectors x̃∗ will be generated conditionally on
the given S. In this way, the bootstrap aims to generate
random vectors x̃∗, such that for a given draw of S, the
conditional distributionL(x̃∗−x̃ |S) is approximately equal
to the unknown distribution L(x̃− xopt).

Algorithm 1. (Error estimate for CS)

Input: A positive integer B, and the sketches Ã, b̃, and x̃.

For: l = 1, . . . , B do
• Draw a random vector i := (i1, . . . , im) by sampling
m numbers with replacement from {1, . . . ,m}.

• Form the matrix Ã∗ := Ã(i, :), and vector b̃∗ := b̃(i).

• Compute the vector

x̃∗ := argmin
x∈Rd

‖Ã∗x− b̃∗‖2, (6)

and the scalar ε∗l := ‖x̃∗ − x̃‖◦.

Return: ε̃(α) := quantile(ε∗1, . . . , ε
∗
B ; 1− α).

Heuristic interpretation of Algorithm 1. To explain why
the bootstrap works, let SA denote the set of positive
semidefinite matrices M ∈ Rn×n such that A>MA is in-
vertible, and define the map ψ : SA → Rd according to

ψ(M) = (A>MA)−1A>Mb. (7)



Error Estimation for Randomized Least-Squares Algorithms

This map leads to the relation∗

x̃− xopt = ψ(S>S)− ψ(In), (8)

where In denotes the n× n identity matrix. By analogy, if
we let S∗ ∈ Rm×n denote a matrix obtained by sampling
m rows from S with replacement, then x̃∗ can be written as

x̃∗ = argmin
x∈Rd

‖S∗(Ax− b)‖2, (9)

and the definition of ψ gives

x̃∗ − x̃ = ψ(S∗>S∗)− ψ(S>S). (10)

Using the corresponding relations (8) and (10), it becomes
easier to show why the distributions L(x̃ − xopt) and
L(x̃∗ − x̃|S) should be nearly equal.

To proceed, if we let s1, . . . , sm ∈ Rn denote the rows of√
mS, it is helpful to note the basic algebraic fact

S>S − In = 1
m

∑m
i=1(sis

>
i − In). (11)

Given that sketching matrices are commonly constructed so
that s1, . . . , sm are i.i.d. (or nearly i.i.d.) with E[s1s

>
1 ] =

In, the matrix S>S becomes an increasingly good approx-
imation to In as m becomes large. Hence, it is natural to
consider a first-order expansion of the right side of (8),

x̃− xopt ≈ ψ′In(S>S − In), (12)

where ψ′In is the differential of the map ψ at In. Like-
wise, if we define a set of vectors v1, . . . , vm ∈ Rd as
vi := ψ′In(sis

>
i − In), then the linearity of ψ′In gives

x̃− xopt ≈ 1
m

∑m
i=1 vi, (13)

and furthermore, the vectors v1, . . . , vm are i.i.d. whenever
the vectors s1, . . . , sm are. Consequently, as the sketch size
m becomes large, the central limit theorem suggests that the
difference

√
m(x̃−xopt) should be approximately Gaussian,

L
(√
m(x̃− xopt)

)
≈ N

(
0,Σ

)
, (14)

where we put Σ := E[v1v
>
1 ].

To make the connection with x̃∗ − x̃, each of the preceding
steps can be carried out in a corresponding manner. Specif-
ically, if the differential of ψ at S>S is sufficiently close
to the differential at In, then an expansion of equation (10)
leads to the bootstrap analogue of (13),

x̃∗ − x̃ ≈ 1
m

∑m
i=1 v

∗
i , (15)

∗For standard types of sketching matrices, the event
S>S ∈ SA occurs with high probability when A>A is invertible
and m is sufficiently larger than d (and similarly for S∗>S∗).

where v∗i := ψ′In(s∗i s
∗>
i − S>S), and the vector s∗i is the

ith row of
√
mS∗. Since the row vectors s∗1, . . . , s

∗
m are ob-

tained by sampling with replacement from
√
mS, it follows

that the vectors v∗1 , . . . , v
∗
m are conditionally i.i.d. given S,

and also, E[v∗i |S] = 0. Therefore, if we condition on S, the
central limit theorem suggests that as m becomes large

L
(√
m(x̃∗ − x̃) |S

)
≈ N

(
0, Σ̂

)
, (16)

where the conditional covariance matrix is denoted by
Σ̂ := E

[
v∗i v
∗>
i

∣∣S]. Comparing the Gaussian approxima-
tions (14) and (16), this heuristic argument indicates that
the distributions L(x̃ − xopt) and L(x̃∗ − x̃|S) should be
close as long as Σ̂ is close to Σ, and when m is large, this is
enforced by the law of large numbers.

2.2. Error Estimation for IHS

At first sight, it might seem that applying the bootstrap to
IHS would be substantially different than in the case of CS
— given that IHS is an iterative algorithm, whereas CS is a
“one-shot” algorithm. However, the bootstrap only needs to
be modified slightly. Furthermore, the bootstrap relies on
just the final two iterations of a single run of IHS.

To fix some notation, recall that t denotes the total
number of IHS iterations, and let St ∈ Rm×n de-
note the sketching matrix used in the last iteration.
Also define the matrix Ãt := StA, and the gradient vec-
tor gt−1 := A>(Ax̂t−1 − b) that is computed during the
second-to-last iteration of IHS. Lastly, we note that the user
is free to select any initial point x̂0 for IHS, and this choice
does not affect our method.

Algorithm 2. (Error estimate for IHS)

Input: A positive integer B, the sketch Ãt, the gradient
gt−1, the second-to-last iterate x̂t−1, and the last iterate x̂t.

For l = 1, . . . , B do

• Draw a random vector i := (i1, . . . , im) by sampling
m numbers with replacement from {1, . . . ,m}.

• Form the matrix Ã∗t := Ãt(i, :).

• Compute the vector

x̂∗t := argmin
x∈Rd

{
1
2
‖Ã∗t (x− x̂t−1)‖22 +

〈
gt−1 , x

〉}
(17)

and the scalar ε∗t,l := ‖x̂∗t − x̂t‖◦.

Return: ε̂t(α) := quantile(ε∗t,1, . . . , ε
∗
t,B ; 1− α)

Heuristic interpretation of Algorithm 2. The ideas under-
lying the IHS version of the bootstrap are broadly similar to



Error Estimation for Randomized Least-Squares Algorithms

those discussed for the CS version. In analogy with Algo-
rithm 1, the main point is to argue that the fluctuations of
x̂∗t around x̂t can be used as a proxy for the fluctuations of
x̂t around xopt.

For a given pair of vectors x̂t−1 and gt−1, define the map
ϕt : SA → Rd according to

ϕt(M) = x̂t−1 − (A>MA)−1gt−1, (18)

where we recall that SA denotes the set of positive semidefi-
nite matrices M ∈ Rn×n such that A>MA is invertible. It
is straightforward to verify that this definition allows us to
represent the difference x̂t − xopt and its bootstrap counter-
part x̂∗t − x̂t in terms of the matching relations

x̂t − xopt = ϕt(S
>
t St)− ϕt(In), (19)

x̂∗t − x̂t = ϕt(S
∗>
t S∗t )− ϕt(S>t St), (20)

where S∗t has m rows sampled with replacement from St.
As in the discussion of Algorithm 1, the right sides of the
relations (19) and (20) can be expanded to first order, which
allows for approximations based on the central limit theorem
to be used. Indeed, it can be argued that as m becomes
large, the random vectors

√
m(x̂t−xopt) and

√
m(x̂∗t − x̂t)

approach a common Gaussian distribution in a conditional
sense. However, the details of this argument are much more
complex than in the CS case — because the map ϕt is
random and varies with t, whereas the map ψ in the CS case
is fixed. A formal analysis may be found in the proof of
Theorem 1 in the supplement (Lopes et al., 2018).

2.3. Computational Cost and Speedups

Of course, the quality control that is provided by error es-
timation does not come for free. Nevertheless, there are
several special properties of Algorithms 1 and 2 that keep
their computational cost in check, and in particular, the cost
of computing (x̃, ε̃(α)) or (x̂t, ε̂t(α)) is much less than the
cost of solving the full LS problem (1). These properties
are summarized below.

1. Cost of error estimation is independent of n.
An important observation to make about Algorithms
1 and 2 is that their inputs consist of pre-computed
matrices of size m × d or pre-computed vectors of
dimension d. Consequently, both algorithms are highly
scalable in the sense that their costs do not depend on
the large dimension n. As a point of comparison, it
should also be noted that sketching algorithms for LS
generally have costs that scale linearly with n.

2. Implementation is embarrassingly parallel.
Due to the fact that each bootstrap sample is com-
puted independently of the others, the for-loops in

Algorithms 1 and 2 can be easily distributed. Further-
more, it turns out that in practice, as few as B = 20
bootstrap samples are often sufficient to obtain good
error estimates, as illustrated in Section 4. Conse-
quently, even if the error estimation is done on a single
workstation, it is realistic to suppose that the user has
access to N processors such that the number of boot-
strap samples per processor is B/N = O(1). If this
is the case, and if ‖ · ‖◦ is any `p norm on Rd, then it
follows that the per-processor cost of both algorithms
is only O(md2). Lastly, the communication costs in
this situation are also very modest. In fact, it is only
necessary to send a single m× d matrix, and at most
three d-vectors to each processor. In turn, when the
results are aggregated, only B scalars are sent back to
the central processor.

3. Bootstrap computations have free warm starts.
The bootstrap samples x̃∗ and x̂∗t can be viewed as
perturbations of the actual sketched solutions x̃ and x̂t.
This is because the associated optimization problems
only differ with respect to resampled versions of Ã and
b̃. Therefore, if a sub-routine for computing x̃∗ or x̂∗t
relies on an initial point, then x̃ or x̂t can be used as
warm starts at no additional cost. By contrast, note that
warm starts are not necessarily available when x̃ or x̂t
are first computed. In this way, the computation of the
bootstrap samples is easier than a naive repetition of
the underlying sketching algorithm.

4. Error estimates can be extrapolated.
The basic idea of extrapolation is to estimate the error
of a “rough” initial sketched solution, say x̃init or x̂init,
and then predict how much additional computation
should be done to obtain a better solution x̃ or x̂t.
There are two main benefits of doing this. First, the
computation is adaptive, in the sense that “just enough”
work is done to achieve the desired degree of error.
Secondly, when error estimation is based on the rough
initial solution x̃init, the bootstrap computations are
substantially faster, because x̃init is constructed from
a smaller sketching matrix than x̃ is. There are also
two ways that extrapolation can be done — either with
respect to the sketch sizem, or the number of iterations
t, and these techniques are outlined in the following
paragraphs.

2.4. Extrapolating with respect to m for CS

The reasoning given in Section 2.1 based on the central limit
theorem indicates that the standard deviation of ‖x̃− xopt‖◦
scales like 1/

√
m as a function of m. Therefore, if a rough

initial solution x̃init is computed with a small sketch size
m0 satisfying d < m0 < m, then the fluctuations of
‖x̃init − xopt‖◦ should be larger than those of ‖x̃ − xopt‖◦



Error Estimation for Randomized Least-Squares Algorithms

by a factor of
√
m/m0. This simple scaling relationship is

useful to consider, because if we let ε̃init(α) denote the error
estimate obtained by applying Algorithm 1 to x̃init, then it is
natural to expect that the re-scaled quantity

ε̃extrap,m(α) :=

√
m0

m
ε̃init(α) (21)

should be approximately equal to the ordinary estimate ε̃(α)
for x̃. The advantage of ε̃extrap,m(α) is that it is cheaper to
compute, since the bootstrapping can be done with am0 × d
matrix, rather than an m × d matrix. Furthermore, once
ε̃init(α) has been computed, the user can instantly obtain
ε̃extrap,m(α) as a function of m for all m > m0, using the
scaling rule (21). In turn, this allows the user to “look
ahead” and see how large m should be chosen to achieve
a desired level of accuracy. Simulations demonstrating the
effectiveness of this technique are given in Section 4.

2.5. Extrapolating with respect to t for IHS

The IHS algorithm is known to enjoy linear convergence
in the `2-norm under certain conditions (Pilanci & Wain-
wright, 2016). This means that the ith iterate x̂i satisfies the
following bound with high probability

‖x̂i − xopt‖2 ≤ c ηi, (22)

where c > 0 and η ∈ (0, 1) are unknown parameters that do
not depend on i.

The simple form of this bound lends itself to extrapolation.
Namely, if estimates ĉ and η̂ can be obtained after the first
2 iterations of IHS, then the user can construct the extrapo-
lated error estimate

ε̂extrap,i(α) := ĉ η̂i, (23)

which predicts how the error will decrease at all subsequent
iterations i ≥ 3. As a result, the user can adaptively deter-
mine how many extra iterations (if any) are needed for a
specified error tolerance. Furthermore, with the help of Al-
gorithm 2, it is straightforward to estimate c and η. Indeed,
from looking at the condition (22), we desire estimates ĉ
and η̂ that solve the two equations

ĉ η̂ = ε̂1(α) and ĉ η̂2 = ε̂2(α), (24)

and direct inspection shows that the choices

η̂ := ε̂2(α)
ε̂1(α)

and ĉ := ε̂1(α)
η̂ (25)

serve this purpose. In Section 4, our experiments show that
this simple extrapolation procedure works remarkably well.

3. Main Result
In this section, we show that the estimates ε̃(α) and ε̂t(α)
are consistent — in the sense that they satisfy the desired

conditions (4) and (5) as the problem size becomes large.
The setup and assumptions for our main result are given
below.

Asymptotics. We consider an asymptotic framework involv-
ing a sequence of LS problems indexed by n. This means
that we allow each of the objectsA = A(n), S = S(n), and
b = b(n) to implicitly depend on n. Likewise, the solutions
x̃ = x̃(n) and x̂t = x̂t(n) implicitly depend on n.

Since sketching algorithms are most commonly used when
d� n, our results will treat d as fixed while n→∞. Also,
the sketch size m is often selected as a large multiple of
d, and so we treat m = m(n) as diverging simultaneously
with n. However, we make no restriction on the size of the
ratiom/n, which may tend to 0 at any rate. In the same way,
the number of bootstrap samples B = B(n) is assumed to
diverge with n, and the ratio B/n may tend to 0 at any rate.
With regard to the number of iterations t, its dependence
on n is completely unrestricted, and t = t(n) is allowed to
remain fixed or diverge with n. (The fixed case with t = 1
is of interest since it describes the HS algorithm.) Apart
from these scaling conditions, we use the following two
assumptions on A and b, as well as the sketching matrices.

Assumption 1. The matrix Hn := 1
nA
>A is positive def-

inite for each n, and there is a positive definite matrix
H∞ ∈ Rd×d such that

√
m(Hn −H∞)→ 0 as n→∞.

Also, if gn := 1
nA
>b, then there is a vector g∞ ∈ Rd such

that
√
m(gn−g∞)→ 0. Lastly, if a1, . . . , an are the rows

of A, then there is a function Ψ : Rd×d → R, such that for
any fixed matrix C ∈ Rd×d, the limit 1

n

∑n
j=1(a>j Caj)

2 →
Ψ(C) holds as n→∞.

In essence, this assumption merely ensures that the sequence
of LS problems is “asymptotically stable”, in the sense that
the optimal solution xopt does not change erratically from n
to n+ 1.

Assumption 2. In the case of CS, the rows of S are gen-
erated as i.i.d. vectors, where the ith row is of the form
1√
m

(si,1, . . . , si,n), and the random variables si,1, . . . , si,n
are i.i.d. with mean 0, variance 1, E[s41,1] > 1, and
E[s81,1] < ∞. In addition, the distribution of s1,1 remains
fixed with respect to n, and in the case of IHS, the matrices
S1, . . . , St are i.i.d. copies of S.

Remarks. To clarify the interpretation of our main re-
sult, it is important to emphasize that A and b are viewed
as deterministic, and the probability statements arise only
from the randomness in the sketching algorithm, and the
randomness in the bootstrap sampling. From an operational
standpoint, the result says that as the problem size becomes
large (n→∞), the outputs ε̃(α) and ε̂t(α) of our method
will bound the errors ‖x̃− xopt‖◦ and ‖x̂t − xopt‖◦ with a
probability that is effectively 1− α or larger.



Error Estimation for Randomized Least-Squares Algorithms

Error Estimation for Randomized Least-Squares Algorithms

(a) MSD (b) CPU (c) Ill-Conditioned (d) Well-Conditioned

Figure 1. .

(a) MSD (b) CPU (c) Ill-conditioned (d) Well-conditioned

Figure 2. .

Figure 1. Numerical results for CS with extrapolation. The black dashed curve represents the ideal benchmark εCS,m(.05) described in
the text. The average extrapolated estimate is shown in blue, with the yellow and green curves being one standard deviation away. Note:
The upper row shows results for `2 error (‖ · ‖◦ = ‖ · ‖2), and the lower row shows results for `∞ error (‖ · ‖◦ = ‖ · ‖∞).

Theorem 1. Let ‖ ·‖◦ be any norm on Rd, and suppose that
Assumptions 1 and 2 hold. Also, for any number α ∈ (0, 1)
chosen by the user, let ε̃(α) and ε̂t(α) be the outputs of
Algorithms 1 and 2 respectively. Then, there is a sequence
of numbers δn > 0 satisfying δn → 0 as n→∞, such that
the following inequalities hold for all n,

P
(
‖x̃− xopt‖◦ ≤ ε̃(α)

)
≥ 1− α− δn, (26)

and

P
(
‖x̂t − xopt‖◦ ≤ ε̂t(α)

)
≥ 1− α− δn. (27)

Remarks. Although this result can be stated in a concise
form, the proof is actually quite involved (cf. (Lopes et al.,
2018)). Perhaps the most significant technical obstacle is
the sequential nature of the IHS algorithm. To handle the
dependence of x̂t on the previous iterates, it is natural to
analyze x̂t conditionally on them. However, because the
set of previous iterates can grow with n, it seems neces-
sary to establish distributional limits that hold “uniformly”
over those iterates — and this need for uniformity creates
difficulties when applying standard arguments.

More generally, to place this result within the context of
the sketching literature, it is worth noting that guarantees
for sketching algorithms typically show that a sketched
solution is close to an exact solution with high probability
(up to multiplicative constants). By contrast, Theorem 1 is
more fine-grained, since it is concerned with distributional
approximation, in terms of specific quantiles of the random
variables ‖x̃− xopt‖◦ or ‖x̂t − xopt‖◦. In particular, the
lower bounds are asymptotically equal to 1− α and do not
involve any multiplicative constants. Lastly, it should also
be noticed that the norm ‖ · ‖◦ is arbitrary, whereas it is

more often the case that analyses of sketching algorithms
are restricted to particular norms.

4. Experiments
In this section, we present experimental results in the con-
texts of CS and IHS. At a high level, there are two main
takeaways: (1) The extrapolation rules accurately predict
how estimation error depends on m or t, and this is shown
in a range of conditions. (2) In all of the experiments, the
algorithms are implemented with only B = 20 bootstrap
samples. The fact that favorable results can be obtained with
so few samples underscores the point that the method incurs
only modest cost in exchange for an accuracy guarantee.

Data examples. Our numerical results are based on four
linear regression datasets; two natural, and two synthetic.
The natural datasets ‘YearPredictionMSD’, n = 463,715,
d = 90, abbrev. MSD), and ‘cpusmall’ (n = 8, 192,
d = 12, abbrev. CPU) are available at the LIBSVM reposi-
tory (Chang & Lin, 2011). The synthetic datasets are both
of size (n = 50,000, d = 100), but they differ with respect
to the condition number of A>A. The condition numbers
in the ‘Ill-conditioned’ and ‘Well-conditioned’ cases are
respectively 1012 and 102. (Details for the synthetic data
are given in the supplement (Lopes et al., 2018).)

Experiments for CS. For each value of m in the grid
{5d, . . . , 30d}, we generated 1,000 independent SRHT
sketching matrices S ∈ Rm×n, leading to 1,000 realiza-
tions of of (Ã, b̃, x̃). Then, we computed the .95 sam-
ple quantile among the 1,000 values of ‖x̃ − xopt‖ at
each grid point. We denote this value as εCS,m(.05),
and we view it as an ideal benchmark that satisfies
P
(
‖x̃− xopt‖ ≤ εCS,m(.05)

)
≈ .95 for each m. Also, the



Error Estimation for Randomized Least-Squares Algorithms

Error Estimation for Randomized Least-Squares Algorithms

(a) MSD (b) CPU (c) Ill-Conditioned (d) Well-Conditioned

Figure 1. .

(a) MSD (b) CPU (c) Ill-conditioned (d) Well-conditioned

Figure 2. .Figure 2. Numerical results for IHS with extrapolation. The black dashed curve represents the ideal benchmark εIHS,i(.05) described in
the text. The average extrapolated estimate is shown in blue, with the yellow and green curves being one standard deviation away. The
upper row shows results for m = 10d, and the lower row shows results for m = 50d.

value εCS,m(.05) is plotted as a function of m with the
dashed black line in Figure 1. Next, using an initial sketch
size of m0 = 5d, we applied Algorithm 1 to each of the
1,000 realizations of Ã ∈ Rm0×d and b̃ ∈ Rm0 computed
previously, leading to 1,000 realizations of the initial error
estimate ε̃init(.05). In turn, we applied the extrapolation
rule (21) to each realization of ε̃init(.05), providing us with
1,000 extrapolated curves of ε̃extrap,m(.05) at all grid points
m ≥ m0. The average of these curves is plotted in blue
in Figure 1, with the yellow and green curves being one
standard deviation away.

Comments on results for CS. An important conclusion
to draw from Figure 1 is that the extrapolated estimate
ε̃extrap,m(.05) is a nearly unbiased estimate of ε̃CS,m(.05)
at values of m that are well beyond m0. This means that
in addition to yielding accurate estimates, the extrapolation
rule (21) provides substantial computational savings — be-
cause the bootstrap computations can be done at a value m0

that is much smaller than the value m ultimately selected
for a higher quality x̃. Furthermore, these conclusions hold
regardless of whether the error is measured with the `2-norm
(‖ · ‖◦ = ‖ · ‖2) or the `∞-norm (‖ · ‖◦ = ‖ · ‖∞), which
correspond to the top and bottom rows of Figure 1.

Experiments for IHS. The experiments for IHS were orga-
nized similarly to the case of CS, except that the sketch size
m was fixed (at either m = 10d, or m = 50d), and results
were considered as a function of the iteration number. To
be specific, the IHS algorithm was run 1,000 times, with
t = 10 total iterations on each run, and with SRHT sketch-
ing matrices being used at each iteration. For a given run,
the successive error values ‖x̂i − xopt‖2 at i = 1, . . . , 10,
were recorded. At each i, we computed the .95 sample
quantile among the 1,000 error values, which is denoted as

εIHS,i(.05), and is viewed as an ideal benchmark that satis-
fies P

(
‖x̂i − xopt‖2 ≤ εIHS,i(.05)

)
≈ .95. In the plots, the

value εIHS,i(.05) is plotted with the dashed black curve as a
function of i = 1, . . . , 10. In addition, for each of the 1,000
runs, we applied Algorithm 2 at i = 1 and i = 2, producing
1,000 extrapolated values ε̂extrap,i(.05) at each i ≥ 3. The
averages of the extrapolated values are plotted in blue, and
again, the yellow and green curves are obtained by adding
or subtracting one standard deviation.

Comments on results for IHS. At a glance, Figure 2
shows that the extrapolated estimate stays on track with
the ideal benchmark, and is a nearly unbiased estimate of
εIHS,i(.05), for i = 3, . . . , 10. An interesting feature of the
plots is how much the convergence rate of IHS depends on
m. Specifically, we see that after 10 iterations, the choice of
m = 10d versus m = 50d can lead to a difference in accu-
racy that is 4 or 5 orders of magnitude. This sensitivity to m
illustrates why selecting t is a non-trivial issue in practice,
and why the extrapolated estimate can provide a valuable
source of extra information to assess convergence.

5. Conclusion
We have proposed a systematic approach to answer a very
practical question that arises for randomized LS algorithms:
“How accurate is a given solution?” A distinctive aspect
of the method is that it leverages the bootstrap — a tool
ordinarily used for statistical inference — in order to serve a
computational purpose. To our knowledge, it is also the first
error estimation method for randomized LS that is supported
theoretical guarantees. Furthermore, the method does not
add much cost to an underlying sketching algorithm, and it
has been shown to perform well on several examples.



Error Estimation for Randomized Least-Squares Algorithms

Acknowledgements
MEL thanks the NSF for partial support of this work un-
der grant DMS 1613218. MWM would like to thank the
National Science Foundation, the Army Research Office,
and the Defense Advanced Research Projects Agency for
providing partial support of this work.

References
Ahfock, D., Astle, W. J., and Richardson, S. Statistical

properties of sketching algorithms. arXiv:1706.03665,
2017.

Ailon, N. and Chazelle, B. Approximate nearest neighbors
and the fast Johnson-Lindenstrauss transform. In Annual
ACM Symposium on Theory of Computing (STOC), 2006.

Ailon, N. and Liberty, E. Fast dimension reduction using
Rademacher series on dual BCH codes. Discrete & Com-
putational Geometry, 42(4):615–630, 2009.

Ainsworth, M. and Oden, J. T. A Posteriori Error Estimation
in Finite Element Analysis, volume 37. John Wiley &
Sons, 2011.

Avron, H., Maymounkov, P., and Toledo, S. Blendenpik:
Supercharging LAPACK’s least-squares solver. SIAM
Journal on Scientific Computing, 32(3):1217–1236, 2010.

Bartels, S. and Hennig, P. Probabilistic approximate least-
squares. In Artificial Intelligence and Statistics (AIS-
TATS), 2016.

Becker, S., Kawas, B., and Petrik, M. Robust partially-
compressed least-squares. In AAAI, pp. 1742–1748, 2017.

Chang, C.-C. and Lin, C.-J. LIBSVM: a library for
support vector machines. ACM Transactions on Intel-
ligent Systems and Technology (TIST), 2(3):27, 2011.
URL http://www.csie.ntu.edu.tw/˜cjlin/
libsvmtools/datasets/.

Clarkson, K. L. and Woodruff, D. P. Low rank approxima-
tion and regression in input sparsity time. In Annual ACM
Symposium on theory of computing (STOC), 2013.

Colombo, N. and Vlassis, N. A posteriori error bounds for
joint matrix decomposition problems. In Advances in
Neural Information Processing Systems (NIPS). 2016.

Davison, A. C. and Hinkley, D. V. Bootstrap Methods and
their Application. Cambridge University Press, 1997.

Drineas, P., Mahoney, M. W., and Muthukrishnan, S. Sam-
pling algorithms for `2 regression and applications. In
Annual ACM-SIAM Symposium on Discrete Algorithm
(SODA), 2006.

Drineas, P., Mahoney, M. W., Muthukrishnan, S., and Sarlós,
T. Faster least squares approximation. Numerische Math-
ematik, 117(2):219–249, 2011.

Drineas, P., Magdon-Ismail, M., Mahoney, M. W., and
Woodruff, D. P. Fast approximation of matrix coherence
and statistical leverage. Journal of Machine Learning
Research, 13:3441–3472, 2012.

Golub, G. H. and Van Loan, C. F. Matrix Computations.
JHU Press, 2012.

Halko, N., Martinsson, P.-G., and Tropp, J. A. Finding
structure with randomness: Probabilistic algorithms for
constructing approximate matrix decompositions. SIAM
review, 53(2):217–288, 2011.

Jiránek, P., Strakoŝ, Z., and Vohralı́k, M. A posteriori error
estimates including algebraic error and stopping criteria
for iterative solvers. SIAM Journal on Scientific Comput-
ing, 32(3):1567–1590, 2010.

Liberty, E., Woolfe, F., Martinsson, P.-G., Rokhlin, V., and
Tygert, M. Randomized algorithms for the low-rank
approximation of matrices. Proceedings of the National
Academy of Sciences, 104(51):20167–20172, 2007.

Lopes, M. E. Estimating the algorithmic variance of random-
ized ensembles via the bootstrap. The Annals of Statistics
(to appear), 2018.

Lopes, M. E., Wang, S., and Mahoney, M. W. A boot-
strap method for error estimation in randomized matrix
multiplication. arXiv:1708.01945, 2017.

Lopes, M. E., Wang, S., and Mahoney, M. W. Error esti-
mation for randomized least-squares algorithms via the
bootstrap. arXiv:1803.08021, 2018.

Ma, P., Mahoney, M., and Yu, B. A statistical perspective
on algorithmic leveraging. In International Conference
on Machine Learning (ICML), 2014.

Mahoney, M. W. Randomized algorithms for matrices and
data. Foundations and Trends in Machine Learning, 3(2):
123–224, 2011.

Meng, X., Saunders, M. A., and Mahoney, M. W. LSRN: A
parallel iterative solver for strongly over - or underdeter-
mined systems. SIAM Journal on Scientific Computing,
36(2):C95–C118, 2014.

Pang, J.-S. A posteriori error bounds for the linearly-
constrained variational inequality problem. Mathematics
of Operations Research, 12(3):474–484, 1987.

Pilanci, M. and Wainwright, M. J. Randomized sketches of
convex programs with sharp guarantees. IEEE Transac-
tions on Information Theory, 61(9):5096–5115, 2015.

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


Error Estimation for Randomized Least-Squares Algorithms

Pilanci, M. and Wainwright, M. J. Iterative Hessian sketch:
Fast and accurate solution approximation for constrained
least-squares. The Journal of Machine Learning Research,
17(1):1842–1879, 2016.

Rokhlin, V. and Tygert, M. A fast randomized algorithm
for overdetermined linear least-squares regression. Pro-
ceedings of the National Academy of Sciences, 105(36):
13212–13217, 2008.

Sarlós, T. Improved approximation algorithms for large
matrices via random projections. In IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

Verfürth, R. A posteriori error estimation and adaptive
mesh-refinement techniques. Journal of Computational
and Applied Mathematics, 50(1-3):67–83, 1994.

Woodruff, D. P. Sketching as a tool for numerical linear
algebra. Foundations and Trends in Theoretical Computer
Science, 10(1–2):1–157, 2014.

Woolfe, F., Liberty, E., Rokhlin, V., and Tygert, M. A fast
randomized algorithm for the approximation of matrices.
Applied and Computational Harmonic Analysis, 25(3):
335–366, 2008.


