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SUMMARY

Conventional seismic techniques for detecting the subsurface geologic features are chal-

lenged by limited data coverage, computational inefficiency, and subjective human fac-

tors. We developed a novel data-driven geological feature characterization approach based

on pre-stack seismic measurements. Our characterization method employs an efficient

and accurate machine-learning method to extract useful subsurface geologic features au-

tomatically. Specifically, we use kernel ridge regression to account for the nonlinear re-

lationship between seismic data and geological features. We further employ kernel tricks

to avoid the explicit nonlinear mapping and infinite dimension of feature space. How-

ever, the conventional kernel ridge regression can be computationally prohibitive because

of the large volume of seismic measurements. We employ a data reduction technique in

combination with the conventional kernel ridge regression method to improve the com-

putational efficiency and reduce memory usage. In particular, we utilize a randomized

numerical linear algebra technique, named Nyström method, to effectively reduce the di-

mensionality of the feature space without compromising the information content required
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for accurate characterization. We provide thorough computational cost analysis to show

the efficiency of our new geological feature characterization methods. We validate the

performance of our method in characterizing geologic fault zones because faults play an

important role in various subsurface applications. Our numerical examples demonstrate

that our new characterization method significantly improves the computational efficiency

while maintaining comparable accuracy. Interestingly, we show that our method yields a

speed-up ratio on the order of∼ 102 to∼ 103 in a multi-core computational environment.

Key words: Geologic Feature characterization, Seismic Measurements, Machine Learn-

ing Methods, Dimensionality Reduction, Randomization Techniques, Nyström Approxi-

mation

1 INTRODUCTION

It is challenging to analyze and interpret seismic measurements for identifying prospective geological

features. The challenges arise from processing of large volumes of seismic data and subjective human

factors. Different geologic features play different roles in characterizing the subsurface structure. Since

geologic fault is one of the most interesting features in subsurface characterization, we use that as the

target to demonstrate the efficacy of our new data-driven geologic feature characterization method. The

geologic fault zone is essential to various subsurface energy applications. In geothermal exploration,

geologic faults provide important information for siting the drilling wells. In carbon sequestration,

geologic faults can be critical to monitor the potential leaks of stored CO2. In oil & gas production,

geologic faults are used to signal reservoir boundaries or hydrocarbon traps.

In current seismic exploration workflows, both imaging/inversion techniques and human inter-

pretation are incorporated to characterize the subsurface. The workflows start with imaging/inversion.

Most seismic imaging/inversion techniques are physics dominated, meaning that the governing physics

equations are well understood and utilized to describe the underlying physics of the problems of in-

terest. A well-known example of this is the seismic full-waveform inversion (FWI) (Lin & Huang

2015a,c; Virieux et al. 2014; Virieux & Operto 2009). In FWI, an inverse problem is formulated to con-

nect the measurements and the governing physics equations. Numerical optimization techniques are

utilized to solve for the subsurface models. Similar framework and procedures can be applied to many

other techniques such as seismic imaging (Zhang et al. 2015; Lin & Huang 2015b), tomography (Lin

et al. 2015; Rawlinson & Sambridge 2014), etc. Even though those conventional methods have been

shown great success in many applications, in some situations they can be limited because of poor

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggy385/5101444 by guest on 18 Septem

ber 2018



Randomized Geologic Feature Characterization 3

data coverage, computational inefficiency, and subjective human factors. With the imaging/inversion

results available, the human interpretor will be employed to make certain modifications based on do-

main knowledge. However, an incorrect imaging/inversion result can either interfere the interpretation,

or even mislead the human expert. Considering the critical impact of seismic imaging/inversion tech-

niques to the final interpretation, a robust, efficient, and accurate subsurface characterization method

is therefore needed.

With the advancement of data science and machine learning, there has been a recent surge in

utilizing automated machine learning methods to characterize subsurface geologic features (Schnetzler

& Alumbaugh 2017; Araya-Polo et al. 2017; Guillen 2015; Zhang et al. 2014; Hale 2013; Ramirez

& Meyer 2011). In seismic applications, the machine learning methods can be categorized into either

“learning from prestack data” or “learning from migrated/inverted model” as shown in Fig. 1. The

major difference between these two types of methods is whether a machine learning method works

on the pre-stack seismic datasets or migrated/inverted models. Most of the existing machine learning

methods for seismic applications are based on the migrated/inverted models, meaning migrated or

inverted models need to be obtained prior to the use of machine learning techniques. In Guillen (2015),

migration imaging models are first obtained from seismic datasets. Machine learning method is then

applied to the imaging model to automatically characterize the salt body. Similarly, in Hale (2013),

a seismic image is first computed before the estimation of the geologic fault location. Despite the

success of those methods, there are limitations though. Firstly, to obtain the migrated/inverted models

usually involves significant amount of computation. Secondly, the success of the prediction heavily

relies on the resulting migrated/inverted model obtained from the data. To avoid these limitations,

another type of learning method has been recently proposed and developed, i.e., learning from pre-

stack seismic data directly. In the work of Araya-Polo et al. (2017) and Zhang et al. (2014), supervised

learning methods are directly applied to the pre-stack seismic data to look for patterns which indicate

the geologic features. Specifically, in Araya-Polo et al. (2017) deep neural network was applied to

seismic datasets to obtain geologic faults. In Zhang et al. (2014), kernel regression was used to learn

a mapping between seismic data and geologic faults. In both papers, promising results have been

reported.

In this work, our novel geologic feature characterization belongs to the “learning from prestack

seismic data” category, meaning our algorithm detects geological features from pre-stack seismic data

directly. Through our experiments, we notice that despite the success of those existing “learning from

prestack seismic data” methods in controlled experiments, they are significantly limited by their com-

putational efficiency, mostly due to the need to process large volumes of high-dimensional data. Conse-

quently, none of the existing solutions are suitable for real-time or even near real-time characterization.
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Figure 1. The category of the different seismic exploration approaches. The data driven methods can be cat-
egorized into either “learning from prestack data” or “learning from migrated model”. The major difference
between these two types of methods is whether a machine learning method works on the pre-stack seismic
datasets or migrated/inverted models.

In typical exploratory geophysics applications, strongly rectangular data arise, which implies that the

number of receivers is much smaller than the number of data points that each receiver collects. Hence,

we develop a scalable geologic feature characterization technique by utilizing tools from randomized

linear algebra allowing computational efficient geological feature characterization.

Randomized matrix approximation methods enable us to efficiently deal with large-scale problems

by sacrificing a provably trivial amount of accuracy (Drineas & Mahoney 2016). Broadly, the under-

lying idea is to perform dimensionality reduction on the large-scale matrix without losing information

pertinent to the considered task. The approach is to construct a sketch of the input matrix, which is

usually a smaller matrix that yields a good approximation and represents the essential information of

the original input (Drineas & Mahoney 2016). The sketch can be obtained by applying a random pro-

jection or selection matrix to the original data. Randomized algorithms have been successfully applied

to various scientific and engineering domains, such as scientific computation and numerical linear al-

gebra (Meng & Mahoney 2014; Drineas et al. 2011; Lin et al. 2010; Rokhlin & Tygert 2008), seismic

full-waveform inversion and tomography (Moghaddam et al. 2013; Krebs et al. 2009), and medical

imaging (Huang et al. 2016; Wang et al. 2015; Zhang et al. 2012).

In this paper, we developed a novel randomized geologic feature characterization method. In par-

ticular, we consider the use of kernel machines for automated feature characterization and design a

scalable algorithm using the Nyström approximation (Drineas & Mahoney 2005; Gittens & Mahoney

2016). It is well known that the kernel matrix is the bottleneck for scaling up the kernel machines,

because the forming, storing, and manipulating of the kernel matrix have high time and memory costs.

The main idea of Nyström method is to approximate an arbitrary symmetric positive semidefinite

(SPSD) kernel matrix using a small subset of its columns, and the method reduces the time com-

plexity of many matrix operations from O(n2) or O(n3) to O(n) and space complexity from O(n2)

to O(n), where n is the number of data samples. There has been various work applying Nyström
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Randomized Geologic Feature Characterization 5

approximation to improve the computational efficiency and memory usage in machine learning com-

munity. Williams & Seeger (2001) used the Nyström method to speed up matrix inverse such that

the inference of large-scale Gaussian process regression can be efficiently performed. Later on, the

Nyström method has been applied to spectral clustering (Li et al. 2011; Fowlkes et al. 2004), kernel

SVMs (Zhang et al. 2008), and kernel PCA and manifold learning (Talwalkar et al. 2013), etc. In this

work, we employ the Nyström approximation to kernel ridge regression. Instead of forming the full

kernel matrix from seismic data, we generate a low-rank approximation of the full kernel matrix by

using Nyström approximation. We further validate the performance of our new subsurface geologic

feature characterization method using synthetic surface seismic data. Our proposed characterization

method significantly improves the computational efficiency while maintaining the accuracy of the full

model.

In the following sections, we first briefly describe some fundamentals of underlying geology and

the governing physics of our problem of interests. We then go through the data-driven approaches –

kernel ridge regression (Sec. 2). We develop and discuss our novel geologic feature characterization

method based on randomized kernel ridge regression method (Sec. 3). We then apply our method to

test problems using both acoustic and elastic velocity models and further discuss the results (Sec. 4).

Further discussions towards future work are provided in Sec. 5. Finally, concluding remarks are pre-

sented in Sec. 6.

2 THEORY

2.1 Geologic Features of Interest: Fault Zones

Geologic fault zone provides critical information for various subsurface energy applications. As an

example, in carbon sequestration, leakage of CO2 and brine along faults at carbon sequestration sites

is a primary concern for storage integrity (Zhang et al. 2009). Accurately siting the geologic fault

zones is essential to monitor the CO2 storage. We first provide some fundamentals on the geological

fault.

The geological fault is a fracture or crack along which two blocks of rock slide past one an-

other (Haakon 2010). As illustrated in Fig. 2, there are three major geological fault types depending

on the relative direction of displacement between the rocks on either side of the fault: normal fault,

reverse fault, and strike-slip fault. The fault block above the fault surface is called the hanging wall,

while the fault block below the fault is the footwall. In this study, we focus on both normal faults and

reverse faults, which are the most common fault types (Haakon 2010).

Out of various geophysical exploration methods, seismic waves are more sensitive to the acous-
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Figure 2. An illustration of the geologic fault zones (image courtesy of Encyclopaedia-Britannica (2010)).
There are three major geological fault types depending on the relative direction of displacement between the
rocks on either side of the fault: normal fault, reverse fault, and strike-slip fault. The fault block above the fault
surface is called the hanging wall, while the fault block below the fault is the footwall.

tic/elastic impedance (which depends on the density and seismic velocity of the medium) of the sub-

surface than other geophysical measurements (Fig. 3a). Hence, seismic exploration has been widely

used to infer changes in the media impedance, which indicates geologic structures. In the next section,

we briefly cover the mathematics and governing physics of seismic exploration.

2.2 Physics-Driven Methods

The physics-driven methods (Fig. 1) are those to infer subsurface model provided with governing

physics and equations. Take the seismic exploration as an example. Seismic waves are mechanical

perturbations that travel in the Earth at a speed governed by the acoustic/elastic impedance of the

medium in which they are traveling. In the time-domain, the acoustic-wave equation is given by[
1

K(r)

∂2

∂t2
−∇ ·

(
1

ρ(r)
∇
)]

p(r, t) = s(r, t), (1)

where ρ(r) is the density at spatial location r, K(r) is the bulk modulus, s(r, t) is the source term,

p(r, t) is the pressure wavefield, and t represents time.

The elastic-wave equation is written as

ρ(r) ü(r, t)−∇ · [C(r) : ∇u(r, t)] = s(r, t), (2)
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Randomized Geologic Feature Characterization 7

where C(r) is the elastic tensor, and u(r, t) is the displacement wavefield.

The forward modeling problems in Eqs. (1) and (2) can be written as

P = f(m), (3)

where P is the pressure wavefield for the acoustic case or the displacement wavefields for the elastic

case, f is the forward acoustic or elastic-wave modeling operator, and m is the velocity model param-

eter vector, including the density and compressional- and shear-wave velocities. We use a time-domain

stagger-grid finite-difference scheme to solve the acoustic- or elastic-wave equation. Throughout this

paper, we consider only constant density acoustic or elastic media.

The inverse problem of Eq. (3) is usually posed as a minimization problem

E(m) = min
m

{
‖d− f(m)‖22 + λR(m)

}
, (4)

where d represents a recorded/field waveform dataset, f(m) is the corresponding forward modeling

result, ‖d− f(m)‖22 is the data misfit, || · ||2 stands for the L2 norm, λ is a regularization parameter

and R(m) is the regularization term which is often the L2 or L1 norm of m. The current technology

to infer the subsurface geologic features is based on seismic inversion and imaging methods, which

are computationally expensive and often yield unsatisfactory resolution in identifying small geologic

features (Lin & Huang 2015a,c). In recent years, with the significantly improved computational power,

machine learning and data mining have been successfully employed to various domains from science

to engineering. In the next section, we provide a different perspective (data-driven approach) of ex-

tracting subsurface geological features from seismic measurements.

2.3 Data-Driven Approach for Subsurface Feature characterization

In this paper, we adopt a data-driven approach, which means that we employ machine learning tech-

niques directly to infer the geological features and that no underlying physics is utilized as shown

Fig. 1. Specifically, suppose one has n synthetic and/or historical seismic measurement vectors x1, · · · ,xn ∈

Rd and the associated labels (which can be the location or angle of geologic faults) y1, · · · , yn ∈ R.

We define

X = [xT1 , · · · ,xTn ]T ∈ Rn×d, (5)

y = [y1, · · · , yn]T ∈ Rn×1. (6)
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(a) (b)

Figure 3. (a). An illustration of subsurface properties exploration by using seismic wave (image courtesy
of Leeuwen (2016)). We see that wavefront propagating beneath the subsurface and a part of it reflected to
the receivers. The source is denoted by a red star and the receivers are denoted by green upside-down triangular.
(b). The diagram of the data-driven procedure to learn geologic features from seismic data. Simulated seismic
measurements are utilized as training data sets, which are fed into the data-driven model. A mapping function,
f?(x′), is the outcome of the training algorithms. The function, f?(x′), is the characterization function, which
creates a link from the seismic measurements to the corresponding geological features.

Overall, the idea of data-driven approach independent of applications can be illustrated as

Physical Measurements f?−→ Labels.

In particular, one can build a machine learning model, such as kernel ridge regression (KRR), and

train the model using the synthetic and/or historical seismic measurements. After training, one gets a

function, f?, which takes a d-dimensional measurement vector as input and returns a prediction of its

label. Then for any unseen measurement vector x′ ∈ Rd, one can predict its label by f?(x′).

As for subsurface geological feature characterization specifically, we illustrate our data-driven

approach in Fig. 3b. Simulated seismic measurements are utilized as training data sets, which are fed

into the data-driven model. A mapping function, f?(x′), is the outcome of the training algorithms. The

function, f?(x′), is the characterization function, which creates a link from the seismic measurements

to the corresponding geological features.

Note the difference between a data-driven model and the physical-driven models as in Eq. (4). A

data-driven model, such as KRR, is generic: it can be used to predict wine quality, web page click,

house price, etc. To apply a data-driven model, one need zero knowledge of the physics behind the

problem; one just need to provide the historical measurement vectors and labels for training. This is in
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Randomized Geologic Feature Characterization 9

sharp contrast to the physics-driven model in Eq. (4), which is specific to one particular problem and

requires strong domain knowledge and intricate mathematical models.

The correctness of our applied data-driven approach, KRR, is ensured by machine learning the-

ory (Friedman et al. 2001; Mohri et al. 2012). Assume that the training and test data are generated

by the same model (otherwise, what is learned from the training data does not apply to the test data).

As more data are used for training, the prediction error monotonically decreases. Importantly, KRR is

known to be robust to noise: even if the training data are corrupted by intensive noise, the prediction is

still highly accurate, provided that the number of training data is sufficiently large. The robustness is

useful in practice, because the seismic measurements have noise, and the locations and angles of the

geologic faults may not be exactly known.

With two different categories of methods introduced (‘Data-Driven Methods’ V.S. ‘Physics-Driven

Methods’), it is worthwhile to mention the distinct differences between these two approaches. The

problem of recovering the inherent parameters of a system (i.e. inverse problem) can be posed as

the problem of regressing those parameters (even thousands) from the input measurements. However,

unlike conventional optimization solutions, machine learning solutions have a strong data dependency,

which is more severe when the regressing parameters are statistically independent. Though in practice

the parameters exhibit strong correlations, the data requirement even for that case is quite high. In

contrast, physics-driven methods are usually formulated as inverse problems where a solution vector

with a much larger size can be calculated, without an explicit need for training data. In order to ensure

the design of robust models with reasonably limited training data, we propose to regress to a small

number of critical variables from geophysical systems. Understanding the actual data requirements,

even with more sophisticated machine learning techniques such as deep neural networks, in order to

perform complete inversion is part of our future work.

2.4 Ridge Regression and Kernel Trick

This work proposes to learn the function in question (denote f?) using data driven techniques such as

ridge regression and kernel ridge regression (KRR). Since all these regression methods are central to

the proposed system, we recap their definitions in the following sections.
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10 Lin et al.

Figure 4. The illustration of the kernel function. The mapping function φ embeds the original data into a high
dimensional feature space where the nonlinear pattern now appears linear.

2.4.1 Ridge Regression

Ridge regression is one of most popular regression methods, which models the linear dependencies

between measurement vectors x and labels y. Its loss function is usually posed as

min
w

{
1

2

n∑
i=1

∥∥yi −wTxi
∥∥2
2

+
λ

2

∥∥w∥∥2}, (7)

where the first term is the cost function and the second term is used to avoid over-fitting. The optimal

solution in primal form is

w? = (XTX + λI)−1XTy. (8)

A prediction can be made by

f?(x) = 〈x, w?〉 = xT w?. (9)

The major shortcoming of ridge regression is its limitation in modeling nonlinear data sets. In seismic

applications, the relationship between the measurement vectors and the labels is nonlinear because of

the governing physics as provided in Eqs. (1) and (2). We need more advanced regression techniques

to model the data nonlinearity while maintaining feasible computational costs. Kernel tricks provide

us with the tools (Schölkopf & Smola 2002).

2.4.2 Kernel Ridge Regression

2.4.2.1 Kernel Trick In our problem, the relationship between data and labels is nonlinear. Em-

ploying linear regression will be insufficient to detect nonlinear pattern. We therefore consider an

embedding map

φ : x ∈ Rm −→ φ(x) ∈ RM , (10)
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where the mapping function φ embeds the original data residing in the low dimensional space of Rm

into a high dimensional space of RM , where the nonlinear pattern now appears linear as illustrated in

Fig. 4. In such a way, we can use the linear regression algorithms to detect the pattern in the higher

feature space. Intuitively, the form of solution to the kernel ridge regression will be the same except

the replacement of x by φ(x) in Eqs. (8) and (9). However, due to the fact that φ(x) can reside in a

very high dimensional space or even infinite space. A direct replacement of φ(x) becomes infeasible.

Kernel trick can be therefore utilized to avoid the usage of the φ(x) explicitly (Schölkopf & Smola

2002). In particular, the solution to the ridge regression in Eq. (8) can be reformulated as its equivalent

dual form

w = XTλ−1(y −Xw),

= XTα, (11)

where α = λ−1(y −Xw). To solve for α, we have

α = λ−1(y −Xw),

= λ−1(y −XXTα).

Hence, we will have

α = (XXT + λI)−1y. (12)

The dual solution to the ridge regression in Eq. (7), can be obtained through Eqs. (11) and (12). With

the embedding function definied in Eq. (10), we will have the kernel ridge regression (KRR) as

α = (φ(X)φ(X)T + λI)−1y,

= (K + λI)−1y,

where K = φ(X)φ(X)T . In practical, we do not need to obtain the φ(X) explicitly. We just need to

calculate the inner product of φ(X)φ(X)T , which is called the kernel trick. A kernel function of κ is

therefore provided.

Definition A function κ : Rd × Rd → R is a valid kernel if
n∑

i=1

n∑
j=1

zizjκ(xi,xj) ≥ 0, for all x1, · · · ,xn ∈ Rd and z1, · · · , zn ∈ R.

In addition, a valid kernel defines such a feature map φ : Rd 7→ F that κ(xi,xj) = 〈φ(xi), φ(xj)〉.
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The in-equality relationship given in the Definition is guaranteed, provided with a positive semi-

definite kernel (Schölkopf & Smola 2002).

2.4.2.2 Ridge Regression with Radial Basis Function Kernel In general, the kernel κ(xi,xj)

measures the similarity between the two samples in Rd. There are three types of kernel functions

mostly used in various applications: linear function kernel, polynomial function kernel, and the radial

basis function (RBF) kernel. Because of the nonlinear data pattern, linear kernel function does not

fit in our problem. The complexity of the model using polynomial function kernel are limited by its

polynomial degree. In contrast, the model complexity based on RBF kernel is potentially infinite.

Therefore, with incremental size of data sets, model with polynomial kernel will be saturated, while

model with RBF kernel will be able to represent the complex relationship. Considering these, we use

RBF as the kernel which is defined as

κ(xi,xj) = exp
(
− 1

2σ2 ‖xi − xj‖22
)
, (13)

where σ > 0 is the kernel width parameter and ‖ · ‖2 is the vector Euclidean norm (`2-norm).

Suppose the seismic measurements are stored as (x1, y1), · · · , (xn, yn) ∈ Rd × R. KRR uses the

data for training and returns a function f̂ which approximates f?. Given a test point x′ ∈ Rd, KRR

makes prediction f̂(x′). We directly state the dual problem of KRR without derivation; readers can

refer to Campbell (2001) for the details:

min
α

{
1

2

n∑
i=1

∥∥yi − (Kα)i
∥∥2
2

+
λ

2
αT K α

}
, (14)

where λ > 0 is the regularization parameter and should be fine tuned. As we illustrated in the previous

section, problem (14) has a closed-form optimal solution

α? = (K + λIn)−1y ∈ Rn, (15)

where In is the n× n identity matrix. Finally, for any x′ ∈ Rd,

f̂(x′) =
n∑
i=1

α?
iκ(x′,xi) (16)

is the prediction made by KRR.

Machine learning theory indicates that more training samples lead to smaller variance and thereby

better prediction performance. Ideally, one can collect as many seismic measurements as desired in

the quest to improve characterization. Unfortunately, the O(n3) time and O(n2) memory costs of
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Randomized Geologic Feature Characterization 13

KRR hinder the use of such large amounts of training data. To the best of our knowledge, these

computational challenges of KRR have not been addressed by any of the prior efforts on using kernel

machines for subsurface applications (Schnetzler & Alumbaugh 2017; Zhang et al. 2014; Ramirez &

Meyer 2011). A practical approach to large-scale KRR is randomized kernel approximation, which

sacrifices a limited amount of accuracy for a tremendous reduction in time and memory costs. In

this work, we apply the Nyström method (Nyström 1930; Williams & Seeger 2001) to make large-

scale KRR feasible on a single workstation. Consequently, we can easily enable the training of KRR

using much larger amounts seismic measurements, thereby achieving substantially improved geologic

characterization performance.

2.4.3 Multivariate Regression Model for Multiple Predictions

With the variables provided in Eqs. (5) and (6), the prediction of our data-driven model is a scalar

value, which is either the location or the angle of the geologic fault zone. In order to apply our tech-

niques to prediction of multiple geologic fault zones, multivariate regression models should be uti-

lized (Hidalgo & Goodman 2013), which is a direct extension of the technique discussed in this paper.

Further, we can incorporate additional constraints to model potential correlations between different

output variables, in the multi-variate case. In particular, instead of using features and labels provided

in Eqs. (5) and (6), we will have

X =[xT1 , · · · ,xTn ]T ∈ Rn×d, (17)

Y =[y1, · · · ,yn]T ∈ Rn×l, (18)

where the additional dimension of l corresponds to the size of the prediction, i.e., the number of fault

zones. Correspondingly, the ridge regression provided in Eq. (7) will be modified as a least-squares

minimization with multiple right-hand sides problem

min
W

{
1

2

n∑
i=1

∥∥yi −W Txi
∥∥2
F

+
λ

2

∥∥W∥∥2
F

}
, (19)

where W ∈ Rd×l, and
∥∥ · ∥∥

F
is the Frobenius norm. The remaining derivations for predictions can

be obtained similarly. As for the focus of this paper, we concentrate on the regression model set

up as Eqs. (5) and (6). Readers who are interested in multivariate regression models can utilize a

straightforward extension of our techniques.
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≈ · ·

𝑛 × 𝑛

𝑠 × 𝑛

𝑛 × 𝑠

𝑠 × 𝑠

Figure 5. Illustration of the Nyström approximationK ≈ ΨΨT = CW †CT , where the low-rank approximation
Ψ = C(W †)1/2 can be obtained.

3 SCALABLE GEOLOGIC CHARACTERIZATION THROUGH RANDOMIZED

APPROXIMATION

In this section, we introduce the Nyström method—a randomized kernel matrix approximation tool—

to the geologic characterization task, aiming at solving large-scale problems using limited computa-

tional resources. Sec. 3.1 describes the Nyström method, Sec. 3.2 theoretically justifies the Nyström

method and its application to KRR, Sec. 3.3 discusses the three tuning parameters, Sec. 3.4 presents

the whole procedure of KRR with Nyström approximation, and finally, Sec. 3.5 analyzes the time and

memory costs.

3.1 The Nyström Method

The Nyström method (Williams & Seeger 2001) is a popular and an efficient approach. In addition

to its simplicity, the Nyström method is a theoretically sound approach: its approximation error is

bounded (Drineas & Mahoney 2005; Gittens & Mahoney 2016); when applied to KRR, its statistical

risk is also theoretically guaranteed (Alaoui & Mahoney 2015; Bach 2013).

The Nyström method computes a low-rank approximation K ≈ ΨΨT ∈ Rn×n in O(nds +

ns2) time. Here s � n is user-specified; larger values of s leads to better approximation but incurs

higher computational costs. The tall-and-skinny matrix Ψ ∈ Rn×s is computed as follows: First,

sample s items from {1, · · · , n} uniformly at random without replacement; let the resulting set be S .

Subsequently, construct a matrix C ∈ Rn×s as cil = κ(xi,xl) for i ∈ {1, · · · , n} and l ∈ S; let W ∈

Rs×s contain the rows of C indexed by S. Gittens & Mahoney (2016) showed that CW †CT is a good

approximation to K, where W † denotes the Moore-Penrose pseudo-inverse of W . The approximation

is illustrated in Fig. 5. Finally, the low-rank approximation Ψ = C(W †)1/2 is computed.
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Randomized Geologic Feature Characterization 15

Besides the Nyström method, a number of other kernel approximation methods exist in the ma-

chine learning literature. Random feature mapping (Le et al. 2013; Rahimi & Recht 2007) is an equally

popular class of approaches. However, compared to random feature mapping, several theoretical and

empirical studies (Tu et al. 2016; Yang et al. 2012) are in favor of the Nyström method. Furthermore,

in the recent years, alternative approaches such as the fast SPSD model (Wang et al. 2016), MEKA (Si

et al. 2014), hierarchically compositional kernels (Chen et al. 2016) have been proposed to speed up

KRR. Since comparing different kernel approximation methods is beyond the scope of this work, we

adopt the Nyström method in our algorithm.

3.2 Theoretical Justifications of the Nyström Method

The Nyström method has been studied by many recent works (Alaoui & Mahoney 2015; Bach 2013;

Drineas & Mahoney 2005; Gittens & Mahoney 2016; Wang et al. 2016, 2017), and its theoretical

properties has been well understood. In the following, we first intuitively explain why the Nyström

method works and then describe its theoretical properties.

Let P ∈ Rn×s be a column selection matrix, that is, each column of P has exactly one nonzero

entry whose position indicates the index of the selected column. We let K = K
1
2K

1
2 and D = K

1
2P .

Then the matrices C and W (in Fig. 5) can be written as

C = KP = K
1
2K

1
2P = K

1
2D and W = P TKP = P TK

1
2K

1
2P = DTD.

The Nyström approximation can be written as

K ≈ CW †CT = K
1
2
[
D(DTD)†D

]
K

1
2 .

In the extreme case where s = n, the matrix D(DTD)†D is the identity matrix In, and thus the

Nyström approximation is exact. In general s < n, the matrix D(DTD)†D is called orthogonal

projection matrix, which projects any matrix to the column space of D. Low-rank approximation

theories show that if the “information” in K is spread-out, then most mass of K
1
2 are in the column

space of a small subset of columns ofK
1
2 . Therefore, projectingK

1
2 to the column space ofD = K

1
2P

loses only a little accuracy, and the Nyström approximation K
1
2

[
D(DTD)†D

]
K

1
2 well approximates

K.

Theoretical bounds (Gittens & Mahoney 2016; Wang et al. 2017) guarantee that the Nyström

approximation CW †CT is close to K in terms of matrix norms. Let r (≥ 1) be arbitrary integer, Kr

be the best rank r approximation to K, and ‖ · ‖ be the spectral norm, Frobenius norm, or trace norm.
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16 Lin et al.

If the eigenvalues of K decays rapidly and the number of samples, s, is sufficiently larger than r, then

‖K − CW †CT ‖ is comparable to ‖K −Kr‖.

Applied to the KRR problem, the quality of the Nyström method has been studied by Alaoui

& Mahoney (2015); Bach (2013). The works studied the bias and variance, which directly affect the

prediction error of KRR. The works showed that using the Nyström approximation, the increases in the

bias is bounded, and the variance does not increase at all. Therefore, using the Nyström approximation,

the prediction made by KRR will not be much affected. In addition, they showed that as the number

of samples, s, increases, the performance monotonically improves.

3.3 Tuning Parameters

KRR with Nyström approximation has totally three parameters: the regularization parameter λ, the

kernel width parameter σ, and the number of random samples s. We discuss the effect of the parame-

ters.

The regularization parameter λ (≥ 0) is defined in the KRR objective function (14) and can be

arbitrarily set by users. From the statistical perspective, λ trades off the bias and variance of KRR: big

λ leads to small variance but big bias, and vice versa. The optimal choice of λ is the one minimizes

the sum of variance and squared bias. However, such optimal choice cannot be analytically calculated;

in practice, it is determined by cross-validation.?

The kernel width parameter σ is defined in (13). It defines how far the influence of a single training

example reaches, with high values meaning “far” and low values meaning “close”. As σ goes to zero,

K tends to be identity, where the training examples do not influence each other and the KRR model

is too flexible; as σ goes to infinity, K tends to be an all-one matrix (its rank is one), where the KRR

model is restrictive and lacks expressive power. In practice, σ should be fine tuned; a good heuristic is

setting σ to √
1
n2

∑n
i=1

∑n
j=1 ‖xi − xj‖22. (20)

or searching σ around this value by cross-validation. Note that computing (20) costsO(n2d) time and

is thereby impractical, a good heuristic is randomly sample a subset J ⊂ {1, · · · , n} and approximate

(20) by √
1
|J |2

∑
i∈J

∑
j∈J ‖xi − xj‖22,

which costs merely O(d|J |2) time.

? Cross-validation is a standard machine learning technique for tuning parameters. One can randomly split the training set into two parts,
train on one part, make prediction on the other, and choose the parameter corresponding to the best prediction error.
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Randomized Geologic Feature Characterization 17

The number of random samples s trades off the accuracy and computational costs: large s leads to

good prediction but large computational costs. If the dataset has n samples of d-dimension, the total

time complexity is O(nds + ns2), and the space (memory) complexity is O(nd + ns). It is always

good to set s as large as one can afford because the prediction monotonically improves as s increase.

3.4 Overall Algorithm: KRR with Nyström Approximation

Using the Nyström method, the training of KRR can be performed in O(nds + ns2) time, where the

user-specified parameter s directly trades off accuracy and computational costs. Empirically speaking,

setting s in the order of hundreds suffices in our application. The overall algorithm is described as

follows.

Training. The inputs are (x1, y1), · · · , (xn, yn) ∈ Rd×R. User specifies s, randomly select s out

of the n samples, form the kernel sub-matrices C ∈ Rn×s and W ∈ Rs×s, and compute Ψ = CW−
1
2 .

The kernel matrix K can be approximated by ΨΨT according to the previous subsection. Finally, α?

defined in Eq. (15) can be approximated by

α̃ =
(
ΨΨT + λIn

)−1
y (21)

= λ−1y − λ−1Ψ(λIs + ΨTΨ)−1ΨT y ∈ Rn, (22)

where the latter equality follows from the Sherman-Morrison-Woodbury (SMW) matrix identity as

defined in Eq. (A.1) and the detailed derivation is provided from Eq. (A.2) to Eq. (A.3). More details

can be found in Wang (2015). It is worthwhile to mention that the n × n matrix of ΨΨT in Eq. (21)

has been replaced by the matrix of ΨTΨ in Eq. (22), which is a much smaller dimension of s×s. This

leads to the significant reduction of the computational costs.

Prediction. Let x′ ∈ Rd be any unseen test sample. The characterization step is almost identical

to Eq. (16): we use α̃ instead of α? and makes prediction by

f̂(x′) =
n∑
i=1

α?
iκ(x′,xi) ≈

n∑
i=1

α̃iκ(x′,xi). (23)

The location or angle of geological fault should be close to f̂(x′).

3.5 Computational and Memory Cost Analysis

The training of KRR without kernel approximation hasO(n2d+n3) time complexity andO(nd+n2)

space (memory) complexity. The costs are calculated as follows. For most kernel functions, including

the RBF kernel, the evaluation of κ(xi, xj) costs O(d) time. One needs to keep the n data samples
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18 Lin et al.

Figure 6. An illustration of the geologic fault zone. The location of a geologic fault zone can be characterized
by its horizontal offset and the dipping angle (Zhang et al. 2014).

in memory to compute every entry of K ∈ Rn×n, which costs O(nd) memory and O(n2d) time. To

compute α?, one needs to keep K in memory and perform matrix inversion, which requires O(n2)

memory and O(n3) time.

The training of KRR with Nyström approximation hasO(nds+ns2) time complexity andO(nd+

ns) space complexity. The costs are calculated as follows. To compute C ∈ Rn×s and W ∈ Rs×s,

one only need to evaluate ns kernel functions, which requires O(nd) memory and O(nds) time. The

computation of α̃ according to Eq. (22) has O(ns) space complexity (because the matrices C and W

need to be kept in memory) and O(ns2) time complexity.

The prediction of KRR, either with or without approximation, for an unseen test sample, x′, has

O(nd) time complexity and O(nd) memory complexity. First, one keeps the n data samples in mem-

ory to evaluate the kernel functions κ(x′,x1), · · · , κ(x′,xn), which costs O(nd) time and O(nd)

memory. Then, one keeps the n kernel function values and α? (or α̃) in memory to make prediction,

which costs merely O(n) time and O(n) memory.

4 NUMERICAL RESULTS

To validate the performance of our proposed approach, we carry out evaluations with synthetic seismic

measurements to characterize the location of the geologic faults. The siting of geologic fault zones can

be characterized by its horizontal offset and the dipping angle as shown in Fig. 6 (Zhang et al. 2014).

We employ our new subsurface feature characterization method to estimate both the offset and angle

of geologic fault zones. As for the computing environment, we run our tests on a computer with 48

Intel Xeon E5-2650 cores running at 2.3 GHz, and 64 GB memory.

The quality of training set is critical for any data-driven model. In this work, we consider velocity

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggy385/5101444 by guest on 18 Septem

ber 2018



Randomized Geologic Feature Characterization 19

Figure 7. A database of velocity models consisting of 60, 000 models of size 100 × 100 grid points. The
velocity models in the database are different from one another in terms of offset (ranging from 30 grids to
70 grids), dipping angle (ranging from 25◦ to 165◦), number of layers (ranging from 3 to 5 layers), layer
thickness (ranging from 5 grids to 80 grids), and layer velocity (ranging from 3000 m/s to 5000 m/s).

models consisting of horizontal reflectors with a single fault zone (layer model) to demonstrate the

performance of our new geologic feature characterization method. It is straightforward to employ

our method to characterize multiple fault zones. To best represent the geologically realistic velocity

models, we create a database containing n = 60, 000 velocity models of size 100 × 100 grid points

similar to Zhang et al. (2014). The velocity models in the database are different from one another in

terms of offset (ranging from 30 grids to 70 grids), dipping angle (ranging from 25◦ to 165◦), number

of layers (ranging from 3 to 5 layers), layer thickness (ranging from 5 grids to 80 grids), and layer

velocity (ranging from 3000 m/s to 5000 m/s). A small portion of the training velocity models are

shown in Fig. 7.

The seismic measurements are collections of synthetic seismograms obtained by implementing

forward modeling on those 60, 000 velocity models. One common-shot gather of synthetic seismic

data with 32 receivers is posed at the top surface of the model. The receiver interval is 15 m. We use

a Ricker wavelet with a center frequency of 25 Hz as the source time function and a staggered-grid

finite-difference scheme with a perfectly matched layered absorbing boundary condition to generate

2D synthetic seismic reflection data (Tan & Huang 2014; Zhang & Shen 2010). The synthetic trace

at each receiver is a collection of time-series data of length 1, 000. So, the dimension of seismic

measurement data is d = 3.2 × 104. Therefore, out of 60, 000 velocity models, the total volume of

synthetic seismic data is 1.92 × 109. In Fig. 8, we show a portion of the synthetic seismic data sets
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(a) (b)

Figure 8. Synthetic seismic data sets are obtained using a staggered-grid finite-difference scheme with a per-
fectly matched layered absorbing boundary condition. The displacement of X direction (a) and Z direction (b)
are both used as training sets. The total volume of synthetic seismic data is 1.92× 109.

corresponding to velocity models that we generate. Specifically, the displacement in the X direction is

shown in Fig. 8(a), and the displacement in the Z direction is shown in Fig. 8(b).

We employ a hold-out test to assess the efficacy of our proposed algorithm. Specifically, 75.0% of

the dataset is used for training the model, while the rest is used for testing. For comparison, we use the

conventional KRR method (denoted by “KRR”) as the reference method. We denote our new geologic

feature characterization method as “R-KRR” standing for Randomized KRR method. To evaluate the

performance, we report both the accuracy and the computational efficiency of different methods. We

use the mean-absolute error (MAE) metric to quantify the accuracy of a data-driven model, which is

defined as

MAE(y, ŷ) =
1

n

n∑
i=1

|yi − ŷi|. (24)

We record the wall clock time to measure the computational efficiency of a method and further provide

the speed-up ratio.

To have a comprehensive understanding our randomized geologic feature characterization meth-

ods, we provide three sets of tests. In Sec. 4.1, we provide an overall test of the characterization

accuracy of our method. In Sec. 4.2, we report the performance of our method as a function of the

number of random samples, s. In Sec. 4.3, we test the robustness of our method with a view on the

randomness of the approximation method.

4.1 Test on Characterization Accuracy

We provide our first test on the characterization accuracy. The estimation result of the dipping angle

and horizontal offset is provided in Fig. 9. We test the performances of our method using two different
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Randomized Geologic Feature Characterization 21

Nyström approximations, s = 3, 000 and s = 6, 000, as well as one other characterization approach

using conventional KRR method. We report the performances of those methods using different sizes of

the seismic data. Specifically, we increase the seismic dataset generated from 5, 000 velocity models

to 60, 000 velocity models with an incremental of 5, 000 velocity models. The corresponding MAE

values are reported in Fig. 9. In particular, the results of angle estimation is provided in Fig. 9(a) and the

results of the offset estimation is provided in Fig. 9(b). We notice when the dataset used for training

is small, KRR method (in cyan) yields more accurate results of both angle and offset estimations.

This is reasonable since all the available data sets are used for estimation. After using data from

10, 000 velocity models, KRR method becomes extremely inefficient because of the selection of the

parameters using cross-validation. It is difficult to evaluate its performance given more training data.

While, our method with both Nyström approximations, s = 3, 000 and s = 6, 000, still yields accurate

results and efficient performance. In particular, our method with larger Nyström approximation, i.e.,

s = 6, 000, consistently gives us better results. Our best estimate of the dipping angle on the full

seismic data set is 0.5◦ (Fig. 9(a)). Similarly, we also report the performance of offset estimation in

Fig. 9(b). The best estimate of the offset using our method on the full data set is about 1 grid.

The total computing time includes data generation, training and prediction phases. We show in

Figure 10 the comparison of the computing times for the training phase using our method (in red and

blue), the conventional KRR method (in cyan) and the time used to generate the required data (in

magenta). In data generation, majority part of the time will be spent on seismic modeling. Based on

our hardware, it takes roughly ~1.0 second to run a full seismic modeling. Provided with a 48-core

processor, it will take ~104.0 seconds to generate the first 5, 000 sets of seismic data. It is reasonable to

assume that the computing time in data generation scales linearly with the number of velocity models.

We have all the computing time costs needed for different numbers of the velocity models as shown in

Fig. 10. By comparing to training times needed for three different scenarios (conventional KRR, our

methods with two different s sizes), the time in training required by the conventional KRR is much

larger than the one in data generation (except for very small data size); while our methods needs much

less computing time in training than the one in data generation. To further compare the training phases

of all three scenarios in Fig. 10, KRR approach is much more computationally expensive and memory

demanding than our method even if it provides a slightly more accurate estimation. On the other hand,

our method is significantly more efficient than the conventional KRR method in training when the data

sets become large. Utilizing the full dataset, it takes our method on the order of 10 seconds to train

the prediction model. The speed-up ratios between our method and the conventional KRR method

in the training phase are up to 1, 000. The durations of predictions for conventional KRR and our

methods are comparable, which are provided in Eq. (23). In our experiments, it usually takes less than
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Figure 9. Estimation error for (a) dipping angle and (b) offset using conventional KRR method (in cyan), our
method using s = 3, 000 (in blue), and our method using s = 6, 000 (in red). KRR method (in cyan) yields
more accurate results of both angle and offset estimations with small size of data sets, and it fails to provide
estimation when data sets becomes too large. Our method yields consistently comparable results to KRR on all
sizes of data sets.

a few seconds to produce a prediction of the dipping angle or offset. To summarize, such an efficiency

provided by our method would allow the possibility to characterize the geologic features in/towards

real time. Though the computational time in estimating the offset is not reported in the paper, similar

conclusions can be drawn on the accuracy and computational efficiency of our method.

To have a visualization of our estimation, we provide a specific example of the true model and our

estimation in Fig. 11. In Fig. 11(a), we show our true velocity model with angle = 79.1◦ and offset

= 49.0. The estimation result of our randomized characterization method is given in Fig. 11(b). The

result of our estimation is angle = 79.0◦ and offset = 50.0. Visually, our randomized characterization

method yields a rather accurate estimation compared to the ground truth.

4.2 Test on the Nyström Sample Size

The number of random Nyström sample size, s, is critical to the accuracy and efficiency of our ran-

domized feature characterization method. The appropriate selection of the Nyström sample size value

depends on the redundancy of data sets, which theoretically can be justified by the spectrum spanned

by the singular vectors of the data sets. In this test, we provide our estimation results by varying the

Nyström sample size, s, from from 1, 000 to 6, 000 with an incremental of 500. Besides the acous-

tic seismic data sets, we also generate elastic seismic data sets for testing our prediction model. The

estimation results are provided in Fig. 12, where Fig. 12(a) is the estimation of horizontal offset and

Fig. 12(b) is the estimation of the dipping angle. In both figures, the estimation results using acoustic

data sets are plotted in red, and the results using elastic data sets are plotted in blue. We notice that in
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Figure 10. The comparison of the computing times for the training phase using our method (in red and blue), the
conventional KRR method (in cyan) and the time used to generate the required data (in magenta). Our method
yields accurate results and is computationally and memory efficient on all data points.

both figures that with the increase of the Nyström sample size, the estimation accuracy for both dip-

ping angle and horizontal offset also increases. This is reasonable and can be explained by the fact that

more information is used for generating the prediction model. Comparing the estimation results using

elastic and acoustic seismic data sets, we notice that the one using acoustic seismic data sets yields

consistently more accurate results. This is because the elastic models include much more parameters

than the acoustic models, which is indicated by Eqs. (1) and (2). With more degree of freedom, more

training data are therefore needed to achieve the same level of accuracy. To conclude on the selec-

(a) (b)

Figure 11. An synthetic model with a geologic fault in it: (a) the true model with angle = 79.1◦ and offset =
49.0; (b) the estimation using our new randomized characterization method. The result of our estimation is angle
= 79.0◦ and offset = 50.0. Visually, our randomized characterization method yields a rather accurate estimation
compared to the ground truth.
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Figure 12. The estimation results by varying the Nyström sample size, s, from from 1, 000 to 6, 000 with an
incremental of 500. Both the estimation results on the horizontal offset (a) and dipping angle (b) are provided.
In both figures, the estimation results using acoustic data sets are plotted in red, and the results using elastic
data sets are plotted in blue. We notice that in both figures that with the increase of the Nyström sample size,
the estimation accuracy for both dipping angle and horizontal offset also increases, which is due to the fact that
more information are utilized in generating the prediction model.

tion of the random Nyström sample size, we would suggest using a value in between 3, 000 to 6, 000

considering a balance between the accuracy and efficiency.

4.3 Test on the Randomness of the Nyström Method

The Nyström method is a randomization-based approach, where the randomness arises from the uni-

form sampling of the columns in generating the low-rank approximation as in illustrated Fig. 5. Here

we test the randomness in the prediction made by KRR with Nyström approximation. We use the

same model as in Test 1, where the size of the velocity models is 100 × 100 grid points. One geo-

logical fault zone is contained in the model. One common-shot gather of synthetic seismic data with

32 receivers is posed at the top surface of the model. We generate 20 different realization tests of the

Nyström method. Each of them is drawn from a uniform distribution. We calculate their dipping angle

and horizontal estimation errors according to Eq. (24). For all the tests, we set the Nyström sample

size, s = 3, 000, and use the full data set size. We report the randomness results in Fig. 13, where

the acoustic estimation results are plotted in red and the elastic results are plotted in blue. We observe

that there are two clusters of data points corresponding to the acoustic and elastic scenarios. All of the

20 different realizations lead to similar error estimations of both dipping angle and horizontal offset.

Also, we notice that the estimation error of elastic cases is higher than that of the acoustic cases, and

this is due to the difference of complexity in the governing equations. The elastic equation yields much

higher variability than the acoustic equation, which means more training data are needed to account

for the larger degree of freedom. In another word, with the same amount of data, the estimations of
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Figure 13. 20 different realization tests of the Nyström Method are generated. Each of them is drawn from a
uniform distribution. Both the dipping angle and horizontal estimation errors according to Eq. 24 are calculated.
For all the tests, we set the Nyström Sample Size, s = 3, 000, and use the full data set size. We report the
randomness results in Fig. 13, where the acoustic estimation results are plotted in red and the elastic results are
plotted in blue. All of the 20 different realizations lead to similar error estimations of both dipping angle and
horizontal offset.

acoustic case will yield higher accuracy with those of the elastic case. From this test, we conclude

that our method yields robust and accurate results regardless of the randomness nature of the Nyström

method.

5 DISCUSSIONS AND FUTURE WORK

In our future research work, we will address the following directions including (1). generalization to

real data, (2). the incorporation of prior knowledge, and (3). detection task of geologic features and

uncertainty analysis.

(i) Generalization to Real Data

It is not only challenging but also important to verify the utility of our methods with real data. One can

employ a number of strategies, along with the proposed inferencing techniques, to ensure the success

of these methods under more realistic settings. (1) Data augmentation: A straightforward strategy

is to augment the training dataset with realistic variants of the synthetic data samples. Currently, we

impose a small amount of Gaussian noise to the synthetic seismic data. One can instead utilize a more

sophisticated Gaussian Mixture Modeling (GMM) (Stergiopoulos 2017) based noise distributions to

build datasets that are more reflective of real-world measurement scenarios; (2) Feature learning: A

common approach in machine learning to facilitate improved generalization is to engineer highly rep-

resentative features that are both critical to the prediction and more broadly applicable to the entire data
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distribution. The characterization method developed in this paper is an end-to-end approach, which is

simpler to implement. While end-to-end learning methods are elegant, they can benefit from domain

experts through the design of meaningful feature representations. Therefore, with carefully engineered

features, our algorithms can be more effective with respect to real data; (3) Domain adaptation: Fi-

nally, when there is a mismatch between the data distribution used for training and the one used for

testing, machine learning methods are known to fail. Broadly referred to as domain adaptation, one

can adopt a gamut of techniques ranging from including a limited number real-world examples in the

training set, to adjusting the pre-trained RKHS coefficients for a new dataset and finally employing

subspace alignment techniques to adjust models to deal with changes to the domain.

(ii) Incorporation of Prior Knowledge

Prior knowledge is important to the generalization of machine learning models. The prior knowledge

is all the auxiliary information including domain knowledge, underlying physics, and many others

that can be used to guide the learning process. As discussed in Yu et al. (2007), there are in general

three categories of methods of incorporating prior knowledge to learning process: 1. to design training

examples using prior knowledge; 2. to initiate the learning algorithm using prior knowledge; 3. to

reformulate the objective function using prior knowledge. We are most interested in approach 2 and

3, where we can modify our objective function by either designing specific kernel function, or we can

learn regularization from data and use it to further facilitate the process of learning.

(iii) Others

Other important tasks of our future work include the geologic feature characterization is the detection

of the existence of geologic feature, which can be formulated as a canonical classification problem.

Also, uncertainty analysis provides users the confidence of the resulting predictions, which can be

important in different situations. We will also investigate this direction according to some existence

literature (Cawley et al. 2006).

6 CONCLUSIONS

We developed a computationally efficient, data-driven approach for subsurface geological features

characterization using seismic data. Instead of detecting geological features from the migrated image

or inversion, our proposed techniques are capable of detecting the geological features of interest from

pre-stack seismic data sets. Our data-driven characterization methods are based on kernel ridge regres-

sion, which can be computationally intensive in training. To overcome the issues of excessive memory

and computational cost that arises with kernel machines for large-scale data, we incorporated a ran-

domized matrix sketching technique. The randomization method can be viewed as a data-reduction

technique, because it generates a surrogate system that has much lower degrees of freedom than the
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original problem. We show through our computational cost analysis that the proposed geologic fea-

ture characterization method achieves a significant reduction in computational and memory costs.

Furthermore, we conducted several sets of experiments of detecting geological fault zone to study

the performance of our method. The empirical accuracy of our method is comparable to the standard

kernel ridge regression, while our method is significantly more efficient. Our data-driven characteri-

zation method presents a big advantage for the characterization of subsurface geological features. The

current purpose of our technique is to complement the process of human intervention, and alleviate

the chance of errors made by subjective human factors. With the improvement of computation power

and the accumulation of data, we envision the replacement of human intervention by autonomous

machine-learning-based subsurface characterization methods.
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APPENDIX A: SHERMAN-MORRISON-WOODBURY MATRIX IDENTITY

Given a square invertible n × n matrix A, an n × k matrix U , and a k × n matrix V , let B be an

n × n matrix such that B = A + UV . Then, assuming
(
Ik + V A−1U

)
is invertible, we have the

Sherman-Morrison-Woodbury matrix identity defined as

B−1 = A−1 −A−1U
(
Ik + V A−1U

)−1
V A−1. (A.1)

By letting A = λIn, U = Ψ, and V = ΨT and employing the above formulation to Eq. (21), we

will have

α̃ =
(
ΨΨT + λIn

)−1
y, (A.2)

=
(
(λIn)−1 − (λIn)−1Ψ(Ik + ΨT (λIn)−1Ψ)ΨT (λIn)−1

)
y,

=
(
(λ−1In − λ−2Ψ(Ik + λ−1ΨTΨ)−1ΨT

)
y,

=
(
(λ−1In − λ−2λΨ(λIk + ΨTΨ)−1ΨT

)
y,

= λ−1y − λ−1Ψ(λIs + ΨTΨ)−1ΨTy ∈ Rn. (A.3)

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggy385/5101444 by guest on 18 Septem

ber 2018



28 Lin et al.

REFERENCES

Alaoui, A. & Mahoney, M. W., 2015. Fast randomized kernel ridge regression with statistical guarantees, in

Advances in Neural Information Processing Systems (NIPS).

Araya-Polo, M., Dahlke1, T., Frogner, C., Zhang, C., Poggio, T., & Hohl, D., 2017. Automated fault detection

without seismic processing, The Leading Edge, 36, 208–214.

Bach, F., 2013. Sharp analysis of low-rank kernel matrix approximations, in International Conference on

Learning Theory (COLT).

Campbell, C., 2001. An introduction to kernel methods, Studies in Fuzziness and Soft Computing, 66, 155–

192.

Cawley, G., Talbot, N., & Chapelle, O., 2006. Estimating predictive variances with kernel ridge regression,

Machine Learning Challenges, pp. 56–77.

Chen, J., Avron, H., & Sindhwani, V., 2016. Hierarchically compositional kernels for scalable nonparametric

learning, arXiv preprint arXiv:1608.00860.

Drineas, P. & Mahoney, M. W., 2005. On the nyström method for approximating a gram matrix for improved

kernel-based learning, Journal of Machine Learning Research, 6, 2153–2175.

Drineas, P. & Mahoney, M. W., 2016. RandNLA: Randomized numerical linear algebra, Communications of

the ACM, 6(6), 80–90.

Drineas, P., W., M. M., S., M., & Sarlos, T., 2011. Faster least squares approximation, Numerische Mathematik,

117, 219–249.

Encyclopaedia-Britannica, 2010. Normal fault, [Online].

Fowlkes, C., Belongie, S., Chung, F., & Malik, J., 2004. Spectral grouping using the nystrom method, IEEE

Transactions on Pattern Analysis and Machine Intelligence, 26(2), 214–225.

Friedman, J., Hastie, T., & Tibshirani, R., 2001. The elements of statistical learning, vol. 1, Springer series in

statistics New York.

Gittens, A. & Mahoney, M. W., 2016. Revisiting the Nyström method for improved large-scale machine

learning, The Journal of Machine Learning Research, 17(1), 3977–4041.

Guillen, P., 2015. Supervised learning to detect salt body, in SEG Technical Program Expanded Abstracts, pp.

1826–1829.

Haakon, F., 2010. Structural Geology, Cambridge University Press.

Hale, D., 2013. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3d

seismic images, Geophysics, 78(2), O33–O43.

Hidalgo, B. & Goodman, M., 2013. Multivariate or multivariable regression?, Am J Public Health, 13(1),

39–40.

Huang, L., Shin, J., Chen, T., Lin, Y., Gao, K., Intrator, M., & Hanson, K., 2016. Breast ultrasound tomog-

raphy with two parallel transducer arrays, in Proc. SPIE 9783, Medical Imaging 2016: Ultrasonic Imaging,

Tomography, and Therapy, pp. 97830C–97830C–12.

Krebs, J. R., Anderson, J. E., Hinkley, D., Neelamani, R., Lee, S., Baumstein, A., , & Lacasse, M. D., 2009.

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/advance-article-abstract/doi/10.1093/gji/ggy385/5101444 by guest on 18 Septem

ber 2018



Randomized Geologic Feature Characterization 29

Fast full-wavefield seismic inversion using encoded sources, Geophysics, 74, WCC177–WCC188.

Le, Q., Sarlós, T., & Smola, A., 2013. Fastfood-computing hilbert space expansions in loglinear time, in

Proceedings of the 30th International Conference on Machine Learning, pp. 244–252.

Leeuwen, T., 2016. Large-scale inversion in exploration seismology, SIAM News, 49(2).

Li, M., Lian, X., Kwok, J. T., & Lu, B., 2011. Time and space efficient spectral clustering via column sampling,

in IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

Lin, Y. & Huang, L., 2015a. Acoustic- and elastic-waveform inversion using a modified total-variation regu-

larization scheme, Geophysical Journal International, 200, 489–502.

Lin, Y. & Huang, L., 2015b. Least-squares reverse-time migration with modified total-variation regularization,

in SEG Technical Program Expanded Abstracts.

Lin, Y. & Huang, L., 2015c. Quantifying subsurface geophysical properties changes using double-difference

seismic-waveform inversion with a modified total-variation regularization scheme, Geophysical Journal In-

ternational, 203, 2125–2149.

Lin, Y., Wohlberg, B., & Guo, H., 2010. UPRE method for total variation parameter selection, Signal Process-

ing, 90(8), 2546–2551.

Lin, Y., Syracuse, E. M., Maceira, M., Zhang, H., & Larmat, C., 2015. Double-difference traveltime tomogra-

phy with edge-preserving regularization and a priori interfaces, Geophysical Journal International, 201(2),

574–594.

Meng, X. Saunders, M. A. & Mahoney, M. W., 2014. LSRN: A parallel iterative solver for strongly over- or

underdetermined systems, SIAM J. Sci. Comput., 36, 95–118.

Moghaddam, P. P., Keers, H., Herrmann, F. J., & Mulder, W. A., 2013. A new optimization approach for

source-encoding full-waveform inversion, Geophysics, 78(3), R125–R132.

Mohri, M., Rostamizadeh, A., & Talwalkar, A., 2012. Foundations of machine learning, MIT press.
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