
Transfer Understanding from Head Queries to Tail Queries

Yangqiu Song
UIUC

yqsong@illinois.edu

Haixun Wang
Google Research

haixun@google.com

Weizhu Chen
Microsoft

wzchen@microsoft.com

Shusen Wang
Zhejiang University
wss@zju.edu.cn

ABSTRACT
One of the biggest challenges of commercial search engines is how
to handle tail queries, or queries that occur very infrequently. Fre-
quent queries, also known as head queries, are easier to handle
largely because their intents are evidenced by abundant click-through
data (query logs). Tail queries have little historical data to rely on,
which makes them difficult to be learned by ranking algorithms.
In this paper, we leverage knowledge from two resources to fill
the gap. The first is a general knowledgebase containing differen-
t granularities of concepts automatically harnessed from the Web.
The second is the click-through data for head queries. From the
click-through data, we obtain an understanding of queries that trig-
ger clicks. Then, we show that by extracting single or multi-word
expressions from both head and tail queries and mapping them to
a common concept space defined by the knowledgebase, we are
able to transfer the click information of the head queries to the tail
queries. To validate our approach, we conduct large scale exper-
iments on two real data sets. One is a mixture of head and tail
queries, and the other contains pure tail queries. We show that our
approach effectively improves tail query search relevance.

Categories and Subject Descriptors
I.2.0 [Artificial Intelligence]: General; H.2.8 [Database Manage-
ment]: Database applications–Data mining; H.3.3 [Information
Storage and Retrieval]: Information Search and Retrieval.

General Terms
Algorithms; Experimentation

Keywords
Knowledgebase; Short Text Conceptualization; Query and URL
Understanding; Search Relevance.

1. INTRODUCTION
Web search queries follow a heavy tailed Zipf distribution [31].

We classify queries into head queries and tail queries [8]. Head
queries, also known as frequent queries, are associated with rich
historical click information. This enables search engines to utilize
statistical models to predict the URL’s click-through rate as search
relevance [19, 28]. Tail queries, also known as rare queries, do not

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
CIKM’14, November 3–7, 2014, Shanghai, China.
Copyright 2014 ACM 978-1-4503-2598-1/14/11 ...$15.00.
http://dx.doi.org/10.1145/2661829.2662078 .

Figure 1: An example of tail query search solution. q is a new
coming tail query that has not seen before. q1, · · · , qN are the
historical queries triggered the clicks of URLs u1, . . . , uJ .

have much user click information. Unfortunately, tail queries con-
stitute the majority of unique queries submitted by users in their
day-to-day use of search engines. It is very valuable but a big
challenge for search engines to improve search relevance for tail
queries.

For example, we can evaluate query and document similarity in
the TFIDF (term frequency, inverse document frequency) vector s-
pace as a relevance measure. This leads to a list of candidate URL-
s. As shown in Fig. 1, for a new tail query q, we obtain candidate
URLs u1, . . . , uJ by query document similarity. However, many of
them may have low relevance even though they have high similari-
ty, because simple content similarities using TFIDF may be differ-
ent from the users’ intents as clicks can reveal. For example, when
a user searches a very rare car insurance, e.g., “geely king kong
car insurance,” he really means the insurance of the particular car
rather than the car itself or even the character King Kong who dam-
aged cars in a movie. Thus, the challenge is how to better estimate
the intents of tail queries?

Several approaches have tried to use search logs to improve search
relevance for tail queries [12, 13, 16, 29, 34]. For example, we can
use the set of queries that historically triggered clicks of a URL as
the description of the URL, since if a query triggers the click of a
URL, we regard that the URL satisfies the intent of the user. An
example of this approach is shown in Fig. 1. Given the goal is to
rank URLs u1, · · · , uJ by their relevance to q, the relevance can be
converted to a similarity measurement between q and q1, · · · , qN in
this model. Since the link between qi and u j can be weighted by the
number of clicks of u j triggered by qi, the user intent of tail query q
can be estimated by the weighted average of the historical queries’
intents.

The above approach of converting the relevance problem into
measuring click-weighted query similarities could be useful in prac-

tice. Nonetheless, there is still some drawback, since a query is just
a piece of short text, and there is not sufficient contextual infor-
mation to compare the semantics of two short texts. For exam-
ple, “seattle hotel jobs” and “seattle hotel” are two queries, and
they have relatively smaller edit distance than the distance between
queries “mars planet” and “venus.” However, the latter two queries
are more semantically similar and the former two represent dif-
ferent meanings. Therefore, the string similarity or bag-of-words
based similarity for queries are not enough to evaluate the semantic
similarity. Several approaches tried to use latent topic models [13]
or deep learning model [17] to extract the latent or hierarchical se-
mantics of queries. In practice, they are slow to train and test. Thus,
they are only applied to query-title similarities but not historical
queries [17, 13]. However, we will show that, considering both the
semantics about historical queries and the user clicks can be much
more useful.

In this paper, instead of evaluating query similarity base on their
surface forms or latent topics, we use explicit semantic representa-
tion of queries. We then evaluate the query similarity in the seman-
tic space. For example, we know “seattle hotel jobs” is different
from “seattle hotel,” since “jobs” is mapped to concepts different
from the concepts “seattle” and “hotel” are mapped to. Moreover,
both “mars planet” and “venus” can be mapped to the concept plan-
et or planet from the Sun. In this case, the similarity between these
two queries is much larger than the similarity evaluated based on
the strings. Thus, if we can correctly parse queries into sub-phrases
and identify their concepts, we can relate queries which are differ-
ent on their surfaces. Then the challenges are how to parse queries
into single or multi-word expressions automatically, how to create
the concept space, and how to map queries to the concept space.
The concept space should be large enough to have broad coverage
of queries and should be with different granularities of semantics
to describe all kinds of queries.

To obtain the concepts, we use a probabilistic knowledgebase,
Probase [36]. Probase contains several millions of concepts and
related instances and attributes names, which are extracted from a
text corpus of 1.68 billion Web pages [36]. It covers more than 80%
of Web queries evaluated on 50-million randomly selected queries
from a real-world search engine [36]. Since the concepts, instances
and attributes are single or multi-word expressions, they enable us
to detect terms in queries which are more semantically meaning-
ful. Then we extend the technique called “short text conceptual-
ization” [32] to capture multiple topics inside a query using simple
but effective clustering, and consequently provide a general way to
map both queries and URLs to the concept space.

Our contributions are the following two key components that to-
gether enable us to better characterize tail queries with semantics
for search relevance.

• First, we employ large scale, probabilistic knowledge about
concepts with different granularities in query understanding.
Using the knowledge, we extract single or multi-word ex-
pressions in queries, map queries (both head and tail queries,
with single or multiple semantic topics) to the concept space,
and compare query similarity in the concept space.

• Second, given the representation of URL as historically clicked
queries, we measure the semantic similarity between a tail
query and a URL based on both the concept similarity and
the popularity of the queries that triggered the clicks of the
URL. Then the similarity depends on the number of click-
s, and thus emphasizes on head queries since they are more
popular. In this case, we transfer the understanding of users’
intent knowledge from head queries to tail queries.

2. RELATED WORKS
In this section, we briefly review the methods of query expansion

and URL representation for improving search relevance.

2.1 Query Expansion
Query expansion approaches mainly fall into two categories: corpus-

based and general-purpose knowledge-based. The corpus-based
approaches use snippets [37], anchor texts [21] or search log ses-
sion data [30] to cluster historical queries. The general-purpose
knowledge-based approaches involve different knoweldgebases, in-
cluding WordNet [25], Wikipedia [24], ConceptNet [14, 20] or the
combination of multiple knowledgebases [6, 15, 26].

However, corpus-based and general-purpose knowledge-based
methods are insufficient for the tail query problem. Given a tail
query, even if we can expand it correctly, the expanded queries
might still be tail queries. In addition, one should be very care-
ful using the expanded queries, because search results are sensitive
to terms. Therefore, in practice, query expansion is often used as
a preprocessing technique to find synonyms, morphological forms
of words or to perform spell checking. Moreover, query expansion
can be used as a tool to do query suggestion after the user submits
a query.

2.2 URL Representation
Since URLs cannot be directly compared with queries, they are

usually represented by related texts. Besides the document content
of a URL, real-world search engines also seek other stronger sig-
nals to help improve the similarity measure between queries and
URLs to improve relevance. There are two main types of fields
used to construct the representation of URLs. The source gener-
ated by the author of a Web page is called the content field, while
the source generated by the other authors is called the popularity
field [29, 34]. Content fields include page body, title, and the URL
text. Unlike content fields, popularity fields can be the anchor texts,
and the queries that trigger the clicks, which can better capture us-
er’s intent information [29, 34].

Inspired by the initial work proposed in [29, 34] to use populari-
ty fields to help search, there have been several advanced statistical
methods developed [12, 13, 16]. Huang et al. [16] demonstrated
that phrases (or multi-word expressions) can be more useful than
words for modeling the similarity between queries and URL rep-
resentations, using an n-gram language model. Gao et al. also
extended the word-level translation model [2] to the phrase-level
translation [12], and showed that phrases with unrestricted lengths
can help improve search relevance. Language models and trans-
lation models are very powerful tools, however, they “do not map
different terms into the semantic clusters but only learn the mapping
relationships directly between a term in a document and a term in a
query” [13]. Therefore, sometimes the semantically related queries
are not identified using such models. Thus, Gao et al. [13] intro-
duced a latent topic model to improve the bag-words-model. They
claims that latent topic models [3] can effectively capture the se-
mantic meaning of queries and documents. More recently, Huang
et al. improved the latent model by learning a deep structure to
incorporate hierarchical semantic information [17]. However, they
are still word based instead of phrase based. Moreover, training
such latent models is time consuming, and thus these latent models
are only applied to the title field. In addition, latent models are not
explicitly understandable for human.

Our work also addresses the problem with single or multi-word
expressions, but we instead use a Web-scale knowledgebase. Our
knowledgebase contains concepts, attributes, instances, and their
relationships with good precision and coverage of Web queries [36].
Thus, the multi-word expressions extracted using the knowledge-

base are more meaningful. Moreover, the knowledgebase contains
a set of taxonomic concepts with different granularities, which re-
flect different levels of semantics. Thus, mapping the terms (ex-
tracted single or multi-word expressions) to the explicit concept
space can naturally incorporate the hierarchical semantic structure
as deep learning model [17]. Egozi et al. [9] have demonstrated
that mapping queries to the explicit concept space can significantly
improve the search relevance results, however, they haven’t incor-
porated the historical click information or other popularity fields.
In this work, we combine the benefits of explicit semantic analysis
which can be understood by human for debugging, and the pop-
ularity fields that reflect users’ intents, and develop a new model.
Our model can transfer the understanding of queries from head to
tail by mapping queries to the same concept space, and leveraging
the click information.

3. EXTERNAL KNOWLEDGE
In this section, we briefly introduce how we acquire relevan-

t knowledge, and the basic idea of conceptualization. There are
many knowledgebases including manually built ones such as Word-
Net [11], Open Directory Project (ODP)1, Wikipedia2, Cyc [22],
and Freebase [4], and automatically constructed ones such as Know-
ItAll [10], TextRunner [1], WikiTaxonomy [27], YAGO [33], NEL-
L [5], and Probase [36]3.

In this paper, we use Probase as the knowledge source that fill-
s the gap between sparse input and understanding. Probase con-
tains more than two million concepts learned iteratively from 1.68
billion web pages. The taxonomy is probabilistic, which means
every claim in Probase is associated with some probabilities that
model typicality, correctness, ambiguity, and other characteristic-
s. The probabilities are derived from evidences found in Web da-
ta, search log data, and other available data. The knowledge we
acquire centers around two relationships that are associated with
concepts, namely, the isA relationship, e.g., China isA emerging
market, and the isAttributeOf relationship, e.g., population isAt-
tributeOf country. We acquire such knowledge through iterative
information extraction from web data. Specifically, to obtain isA
relationships, we use Hearst patterns and other syntactic patterns.
For instance, from a sentence “... European artists such as Pablo Pi-
casso ...,” we obtain Pablo Picasso isA European artist. To obtain
isAttributeOf relationships, we consider sentences such as “What is
the population of China?”, from which we obtain population isAt-
tributeOf China. We perform sophisticated inference to clean and
enrich the knowledge acquired from the syntactic patterns [36].

In order for the knowledge to be useful for conceptualization
or understanding, it needs to satisfy two requirements. First, the
knowledge should have a broad coverage. People use millions of
concepts (e.g., emerging market, European artist, etc.) in their
communication and a query can contain any of those concepts.
Thus, we need a general knowledgebase that can cover as many
concepts as possible. Existing knowledgebases [1, 4, 10, 11, 22,
27, 33] contain a limited number of concepts, which limits their
power in interpreting the natural language. Probase covers more
than 80% of Web queries evaluated on 50 millions randomly se-
lected queries from a real-world search engine [36], which means
it can cover almost all the head queries and most of the tail queries.
This lays the foundation for understanding the human generated
queries which express subtle meanings and intents.

Second, in order to support inference, the acquired knowledge in
Probase provides probabilistic information. For example, the prob-

1http://www.dmoz.org/
2http://www.wikipedia.org/
3http://research.microsoft.com/probase/

ability P(instance|concept) tells us how typical the instance4 is in
the given concept. Intuitively, knowing that both “robin” and “pen-
guin” are birds is not enough. We need to know robin is a much
more typical bird than penguin, that is, when people talk about
birds, it is more likely that they are thinking about robins than pen-
guins. Such information is essential for understanding the intent
behind a short text. Besides P(instance|concept), we also obtain
P(concept|instance), P(concept|attribute), and P(attribute|concept).
These values are obtained during the information extraction pro-
cess, for example:

P(instance|concept) =
n(instance, concept)

n(concept)
(1)

where n(instance, concept) denotes the number of times instance
and concept appear in the same sentence in a corpus, and n(concept)
is the frequency of the concept.

4. QUERY AND URL CONCEPTUALIZATION
We use external knowledgebases for short text understanding.

We first map queries (head queries and tail queries) to the concept
space (Section 4.1) and then we expand URLs by adding textual
context so that we can map URLs to the concept space as well
(Section 4.2).

4.1 Query Conceptualization
Given a query, which consists of a set of terms (single or multi-

word expressions), we want to infer the concepts from the query.
We call the process conceptualization. Fig. 2 shows two examples
of conceptualization. We can see that from terms “microsoft” and
”apple,” we get company related concepts, while for terms “pear”
and “apple,” we get fruit related concepts. However, queries are
complicated. For example, they often contain multiple topics (e.g.,
a query such as “Obama’s real-estate policy”). In this section, we
describe the techniques of conceptualizing any short text.

Parsing
Before mapping a query to concepts we want to parse it mean-
ingfully into a set of terms that exist in our knowledgebase. For
example, for query “disposable chopstick manufacturer,” we ob-
tain {“disposable chopstick,” “manufactures”}, where both are the
longest terms in the knowledgebase that appear in the query (the
knowledgebase also contains “chopstick” as a term, but we assume
it does not contain “disposable chopstick manufacturer” as a sin-
gle term). Similarly, there are many cases where we should make
decisions to find the most meaningful terms in the queries.

In general, suppose our knowledgebase contains a set of terms
{t1, · · · , tV }, where term t can be an instance e, an attribute a or a
concept c. A piece of short text consists of a sequence of words.
A term occurs as a contiguous sequence of words in a short text. We
use l(t) to denote t’s length. For example, l(“disposable chopstick”)
= 2. We use n(t) to denote the number of concepts t corresponds
with. For example, if t = “apple” corresponds with the concept-
s of fruit and company only, then n(t) = 2. A term may corre-
spond to a large number of concepts. As an example, we have
n(“driving school”) = 18 and n(“San Diego”) = 327.

Our parsing method tries to find the Longest Covering Term (LCT)
of short text (see Algorithm 1). We say a term t covers a word w if
both t and w appear in the short text and t contains w. For example,
“disposable chopstick” covers “chopstick.” The algorithm ensures
that every word in the short text is covered by a term (if possible).
We denote ti ≽ tk if l(ti) > l(tk), or if n(ti) ≥ n(tk) and l(ti) = l(tk).

4Here, we use instance to denote a sub-concept or an entity.

(a) Conceptualization of “microsoft” and “apple.” (b) Conceptualization of “pear” and “apple.”
Figure 2: Conceptualization of terms using [32]. Y-axis represents the significance weight for each concept. Larger weights means
more important the concept is to represent the text.

Algorithm 1 The Longest Covering Term Algorithm
1: Input: a short text;
2: Best covering term set T ← ∅;
3: Break the text into a sequence of words (w1, · · · ,wN);
4: Term setW← detect all terms from (w1, · · · ,wN);
5: for i = 1 to N do
6: Term setW′ ← all terms inW that covers wi;
7: t ← best term inW′ w.r.t term comparison ≽:
8: ti ≽ tk if l(ti) > l(tk), or if n(ti) ≥ n(tk) and n(ti) = n(tk)
9: T ← T ∪{t};

10: end for
11: Output: best covering terms T .

Figure 3: The first line “truck driving school in San Diego” is
a given short text, which contains 6 words; these 6 words make
up 7 terms. Each word is labeled with its position in the tex-
t, and each term is labeled with its range. Each word chooses
the longest covering term, as denoted by an arrow in the fig-
ure. Note that the word “driving” has two covering terms of
the same length, “driving school” is chosen since it corresponds
to more concepts than “truck driving.”

When multiple terms are detected, we choose the best term (with
respect to “≽”) to cover each word. An example is shown in Fig. 3.

Single-topic Conceptualization
For now, let us assume all terms in a query reflect the same top-
ic (e.g., “microsoft” and “apple” are companies, while “microsoft
windows,” and “windows 8’ refer to operating systems), and that
our goal is to derive that topic. To do this, we identify the top K
candidate concepts C = {ck} ranked by their likelihood from a set
of terms of unknown types T = {t1, . . . , tL}. Here, the type of a
term can be either an instance or an attribute. Note that the same
term can serve as an instance as well as an attribute. For example,
“population” can be an attribute of country, but it can also be an in-

stance of geographical data. However, it is rare that a term is both
an instance and an attribute of the same concept.

We introduce an auxiliary variable zl to indicate the type of term
tl. Specifically, zl = 1 if tl is an instance, and zl = 0 if tl is an
attribute. Given that the knowledgebase contains noise, we han-
dle the logic in a discriminative manner. We introduce a noisy-or
model to first infer the probability P(ck |tl):

P(ck |tl) = 1 − (1 − P(ck |tl, zl = 1))(1 − P(ck |tl, zl = 0)), (2)

where term tl invokes concept ck if it is an instance of ck, or an
attribute of ck. Here, we have

P(ck |tl, zl = 1) = P(ck |el) = P(ck, el)/P(el), (3)

where term tl is regarded as an instance el, and

P(ck |tl, zl = 0) = P(ck |al) =
∑

i:ei∈E

P(ck |ei)P(ei|al), (4)

where term tl is regarded as an attribute al, and E is the set of in-
stances that are related to attribute al and concept ck. Then, using
the naive Bayes rule, we derive the concept posterior given a set of
terms by:

P(ck |T) ∝ P(ck)
L∏
l

P(tl|ck) ∝
∏

l P(ck |tl)
P(ck)L−1 , (5)

where P(ck |tl) is given by Eq. (2) [32].

Multi-topic Conceptualization
The parsing results of many queries consist of terms that reflect
more than one topic. For example, for query “disposable chop-
stick manufacturer,” we get {“disposable chopstick,” “manufactur-
er”}, and for query “alabama home insurance,” we get {“alabama,”
“home insurance”}. The previous conceptualization method per-
forms a joint inference on the terms. The Bayesian rule in Eq. (5)
tends to emphasize the common concepts belonging to the terms.
Even after using smoothing techniques in naive Bayes [32], it may
still lead to general, vague, and even meaningless concepts such as
object, item, thing, etc.

We capture multiple topics in a query through term clustering.
We first represent each term ti as a concept vector c = (c1, . . . , cM) ∈
RM where M is the total number of concepts in the knowledgebase.
In practice, we only retrieve the top K concepts for each term and
thus ci is a sparse vector. Then we formulate the term relationship
as a connected weighted graph G = {V,E}, where V is the vertex
set and E is the edge set. We define the terms detected in a query as
vertices in the graph, and define weights on the edges between them

(a) Conceptualization of “microsoft windows 8.” (b) Conceptualization of “alabama home insurance.”
Figure 4: Conceptualization with clustering. Y-axis represents the significance weight for each concept. Larger weights means more
important the concept is to represent the text.

using cosine similarities between concept vectors. More specifical-
ly, we define the weight si j between ti and t j as:

si j = cosine(ci, c j) =
cT

i ci

||ci|| · ||c j||
. (6)

Then, we devise a clustering algorithm to find connected sub-graphs
after filtering out edges whose weights are below a threshold. We
use a pre-defined threshold to filter out non-significant edges. Thus,
terms that are not semantically related will not be clustered togeth-
er. Then we discover connected sub-graphs using a simple graph
traverse algorithm, and all the terms that are connected to each oth-
er will be grouped together. The time complexity is in quadratic
order of the number of terms detected in a query O(L2), because
we compute pairwise similarity in the beginning of the algorithm.
In general, a query has very small number of terms. Therefore, the
computational cost for clustering is not significant.

Given the term clusters, we then use Eq. (5) to conceptualize
each cluster of terms. In this way, the common concepts of a set
of related terms will be ranked higher than the individual ones. For
example, as [32] pointed, given “China” and “Japan,” the top con-
cepts will contain Asian country and eastern country. However,
given “China” and “Russia,” the top concepts will contain emerging
market and developing country. Then for each cluster r discovered
by simple graph cut, we represent it as a concept vector cr

q, which
is the concept vector of rth cluster of query q, using Eq. (5). Then
the conceptualization of a query is given by:

cq =
1
L

∑
lr · cr

q, (7)

where L is the number of terms detected in a query, and lr is the
number of terms grouped into cluster r. Now the conceptualization
result of a query is a weighted mixture of multiple topics, where
each topic is described by a set of related concepts. When we
compare the semantic relationship between this query and the other
queries, different topics will contribute differently.

Fig. 4 shows two examples of conceptualization results. For the
query “microsoft window 8,” our algorithm automatically deter-
mines that there is only one topic about operating systems in that
query. For the query “alabama home insurance,” our algorithm i-
dentifies that there are two topics, and balance these two topics to
get better concept distribution.

4.2 URL Conceptualization
In web search, given a query q, we want to evaluate its relevance

to a set of URLs u1, u2, · · · . Figure 5 illustrates the setting of the
problem. Using the techniques described in Section 4.1, we map q

to a set of concepts c1, c2, · · · . The same query q is also mapped to a
set of URLs u1, u2, · · · . Our goal is thus to establish the relationship
between the concepts and the URLs, so that knowledge from the
URLs can be channeled by the concepts to the tail query. In this
section, we show how we can introduce another layer in the figure
(shown as the top layer in the figure), through which the knowledge
in the concepts can be used to filter and rerank the URLs.

Figure 5: Knowledge from concepts goes through an additional
layer to act upon a set of URLs and evaluate their relevance. sti

here means short text, which can be clicked query, anchor text,
or title of URL.

Textual Representations of a URL
URLs by themselves do not contain much information. They are
not natural language texts and the conceptualization mechanisms
we developed cannot be applied to URLs directly. In our approach,
we introduce an additional layer as shown in Fig. 5: the textual rep-
resentation of the URLs. Our goal is to convert URLs to a textual
representation, and then map the textual representation to the con-
cept space. The question is then, what are the appropriate textual
representations of URLs. There are a few options. In this paper,
we discuss three of them: clicked queries, anchor texts, and URL
titles.

• Clicked queries: For a query q, the search engine returns a
set of URLs. Assume u is a URL clicked by the user. We
call q a clicked query of u. We use the set of clicked queries
as a textual representation of u. The motivation is that if the
URL is clicked by a query, we have reasons to believe that
the URL satisfies the intent of the user’s query. For example,
for URL http://www.monster.com, representative queries that
trigger clicks on the URL include “monster.com,” “hotjob-
s.com,” “jobs,” “career monster,” etc. These queries form a
good description of the website the URL points to. More ex-
amples of clicked queries are listed in Table 1, where each
query is weighted by the number of clicks.

Table 1: Examples of URLs and the clicked queries.
URL Representative queries (click count)
http://www.monster.com monster.com (67507); monster jobs (8155); job search (2654);

jobs (2332); hotjobs (1271); ...
http://www.petsuppliesplus.com pet supplies plus (19102); pet supplies (495); Pet Supplies plus

Stores (46); ...
http://www.dmv.ca.gov/pubs/interactive/tdrive/exam.htm Driver License Test (530); dmv california practice test (388);

dmv written test questions and answers (45); ...
http://abcnews.go.com/US/Story?id=2721089&page=1 520 bridge motorcycle tolls (1); what the families of jumpers say

about The Bridge (1)
http://chemistry.about.com/cs/chemistry101/a/aa071503a.htm reactions in aqueous solutions (10); Ions in an Aqueous Solution

(1); what type of reaction is Zn+HCl (1); ...
http://www.northerntrust.com/pws/jsp/display2.jsp?XML=
pages/nt/0601/1138283678319_6.xml&TYPE=interior&dc=30

northern trust economic research (32); northern trust economics
(2); northern trust paul kasriel (1)

http://baucus.senate.gov senator of montana (1)
http://download.oracle.com/docs/cd/B28359_01/server.111/
b28310/schema002.htm

enable resumable timeout sql (1)

Table 2: Examples of URLs and the anchor texts.
URL Representative anchor text (count)
http://www.the-master-cleanse.net www the master cleanse net (222); master cleanse detox (162); the grasp

cleanse net (145); ...
http://www.usairways.com us airways mainline (258); us airways home page book travel airlines offi-

cial site (114); us airways inc us (179); ...
http://jetblue.com jet blue airways home page (209); jetblue airline tickets flights and (207);

jet blue site (138); online offering (93); ...
http://kidscluster.com "kids cluster (1115); newsletter for upcoming buying group of 7000 retail-

ers (243); visit (145)
http://www.djbooth.net new hip hop songs music charts interviews (99); music downloads hip hop

.net (74); new hip hop mixtapes albums (90); ...
http://www.workhappynow.com/2009/07/why-dont-
people-laugh-work/

fear of laughing in the office (19); why people don t laugh at work (24);
why don t people laugh at work (11); work happy now (9);

http://allrecipes.com/Recipe/Fresh-Fruit-Flan/Detail.
aspx

fresh fruit flan allrecipes (93); http allrecipes com recipe fresh fruit flan
detail aspx src rss (93); fresh fruit flan (132); ...

• Anchor texts: The anchor text is the visible, clickable text
in a hyperlink. For each URL u, we collect the anchor texts
in the hyperlinks where u is referenced. We then use the set
of unique anchor texts as the textual representation of u. The
motivation is that an anchor text gives relevant descriptive
or contextual information about the destination of the hyper-
link [34]. Furthermore, the more popular an anchor text is,
the more likely it truly represents URL u. More examples are
shown in Table 2, where each anchor text is associated with
the number of times it is used as its weight.

• URL titles: For each URL, we also obtain the title of its des-
tination page [34]. Unlike clicked queries and anchor texts,
each URL corresponds to only one title. This also means the
link between the title and the URL has a unit weight. Another
difference is that the title is the description given by the au-
thor of the web page, while clicked queries and anchor texts
represent what other people think about the page. Because
of the differences, conceptualization based on titles does not
bring as significant improvement as anchor texts and click
queries, as shown by our experimental results.

Conceptualization
We add textual representation for URLs as an additional layer in
Fig. 5. Whether the layer consists of a set of clicked queries, or a set
of anchor texts, or a title, we can conceptualize them as short texts.
This enables us to map the URLs to concepts indirectly through the
added layer.

Let u denote a URL, and let {st1, . . . , stN} denote its textual rep-
resentation, where sti is short text (a clicked query, an anchor text,

or a title). We map u to a concept vector cu by

cu =
1∑
wsti

N∑
i=1

wsti csti . (8)

Here, wsti is the score of short text sti, and it is defined as wsti =

log[count(sti)+1] where count(sti) is the frequency of short text sti

co-occurring with URL u (that is, how many times a unique anchor
text is used when referencing u in a hypertext, or how many times u
is clicked in response to a query). The intuition is to weight the con-
cepts with the count. For example, if a query triggered more clicks
of that URL, the concepts describing that query will be weighted
more importantly when computing the concepts of the URL.

Now, we have represented each URL as a vector of concepts.
Then the queries and the URLs are comparable in the same space.
For historical queries, we compute the query-URL pairwise simi-
larities and input them to a learning to rank algorithm associated
with the other features extracted from the pairs to learn the param-
eters. For the online search problem, we should compute the con-
ceptualization of URLs offline. This can be handled using an en-
terprise level MapReduce-type system in days. Given a new query,
which may be a tail query we have never seen before, we compute
the concepts of that query and compute the similarities between the
query and the candidate URLs. Then the similarities are input as
features for the learning to rank system for further judgement of
relevance.

5. EXPERIMENTS ON REAL DATA
In this section, we present the experimental results conducted

on two real data sets, and show the performance of how conceptu-
alization can improve search relevance. The results for relevance
are evaluated using the NDCG (normalized discounted cumulative

Table 4: Statistics of anchor text data on two benchmark data sets.
Data set Mixture Tail

Valid URLs 6,913,177 266,121
Anchor char length 20.93±15.98 19.84±15.75

Anchor words 3.36±2.61 3.23±2.59
Unique anchor texts for URL 14.47±309.37 68.00±1,460.93

Table 5: Statistics of query clicks over Click 5M data on the two benchmark data sets.
Data set Mixture Tail

Valid URLs 7,230,841 296,400
Query char length 13.01±9.44 10.39±6.27

Query words 2.07±1.68 1.48±1.01
Query clicks for each URL 581.71±182,084.84 8,777.85±950,575.36

Unique query clicks for each URL 62.88±380.51 229.24±1,506.12

Table 3: Statistics of two benchmark data sets.
Data set Mixture Tail

Queries 303,259 12,205
Total pairs 19,397,159 369,291
Avg. URLs 63.96 37.24

Query char length 24.51±17.03 30.57±15.45
Query word count 4.08±3.00 5.18±2.89

gain) [18] score: NDCG@K = 100
Z

∑K
r=1

2k(r)−1

log(1+r) , where k(r) is the
relevance label for the document ranked at position r; K is the level
that NDCG is computed; and Z is a normalization constant which
makes NDCG@K = 100 for the best ranking list. Generally, we
compute the average NDCG score over all queries. Obviously, ND-
CG can be used to evaluate multilevel ranking values in terms of
positions for search relevance.

To train a competitive ranking function, we use a gradient boost-
ing tree algorithm [35] which is accepted as a state-of-the-art “learn-
ing to rank” algorithm. Additionally, our gradient boosting tree can
directly optimize NDCG.

To derive a consistent and trustful experimental report, we con-
duct our experiment with the two-fold cross validation approach.
That means the data are split into training and test sets. Training
data are used for learning the ranking function, and test data are
used to calculate NDCG results. All the experiments are based on
six random splitting trials to compute the average NDCG scores.

5.1 Benchmark Data Sets
In this section, we briefly introduce the two data sets we used.

The first data is a mixture of head and tail queries uniformly sam-
pled from search logs. The second data set is elaborately selected
which contains only tail queries that appeared only once in one
day. A comparison of statistics of two data sets is shown in Ta-
ble 3. We see that, the average query length of the mixture data
is less than the one of tail data. Averagely speaking, tail queries
tend to be individual and longer than head queries. The data sets
are quite large, because we need to compute all related historical
queries and anchor texts associated to the URLs. In practice, we
compute the scores using a MapReduce-type mechanism under a
distributed computing environment. Our approach can be easily s-
caled up because we deal with each short text individually using the
same knowledgebase. For each pair of query and URL, on average
it needs tens of milliseconds on a 2.8GHz PC machine.

5.2 Historical Data Collection
We collect the anchor text data from one day’s snapshot of Web

pages from a commercial search engine. The data contains billions
of URLs and anchor texts with counts, and it takes 286G on disk to

store the raw data. We filter out the anchor text data with the URLs
contained in the two benchmark data sets. The statistics of the data
is described in Table 4.

We see the average word count in anchor text is 3.36 and 3.23
for mixture and tail data sets, namely there are on average about
three words for each anchor text. Moreover, the average number
of unique anchor text for each URL is 14.47 and 68.00 for mixture
and tail data set. It seems that the mixture data set contains both
head and tail URLs, however, in the tail data set, there are more
head URLs. The variances of numbers of unique anchor text for
both data sets are large. This means the distribution of the number
has very long tail.

We collect the clicked query data with two data sets to demon-
strate the use of historical click information. The first click data
contains five months search log, and the second click data contains
ten months search log. We name these two sets Click 5M and Click
10M. They cost 178G and 323G on disk respectively. We also join
these two data sets with the two benchmark data sets. The statistical
numbers are shown in Tables 5 and 6.

We can see that there are more valid URLs in the 10 months’
data than in the 5 months’ data. The average query word number
is about 2 for mixture benchmark and 1.5 for tail benchmark. This
shows that, there are more head queries in the historically clicked
query data sets, and the clicked queries joined with the tail bench-
mark data set tend to be head queries. This is consistent with the
conclusion that in the tail data set, there are more head URLs. The
average number of query clicks for each URL in tail data is also
larger than the one in the mixture data. Moreover, the number of
query clicks of each URL in 10 months’ data is about two times
the number of the 5 months’ data. However, the unique number of
queries for each URL in the 10 months’ data is only one and a half
times the number of 5 months’ data. This means when we collect
the data over a longer time period, the coverage does not grow as
fast as the number of clicks grows. This means, head queries and
URLs receive more clicks.

5.3 Evaluation and Discussion
We compare our methods with different sources with two rank-

ing baselines. We have four data sources of both mixture and tail
queries, i.e., title, anchor, click 5M and click 10M. The title source
contains the landing page titles of URLs. The anchor and click data
are extracted as the above introduced. The four data sources will
have different ranking NDCG results because they do not have the
same URL set. From Tables 4, 5 and 6 we see that there are dif-
ferent valid URL numbers for different source and data. Therefore,
in the following experiments, we only show how significant con-

Table 6: Statistics of query clicks over Click 10M data on the two benchmark data sets.
Data set Mixture Tail

Valid URLs 7,970,177 325,716
Query char length 13.35±9.37 10.41±6.28

Query words 2.05±1.66 1.49±1.10
Query clicks for each URL 1,021.50±351,854.21 15,898.87±1,839,522.70

Unique query clicks for each URL 97.50±610.28 362.84±2,448.04

Table 7: Comparison of NDCG scores with different single sim-
ilarity measure for mixture data.

Methods Title Anchor Click 5M Click 10M
Edit 39.66 41.39 40.59 40.35

Cosine 39.16 41.49 41.39 40.88
Cosine+Edit 40.38 42.32 42.26 41.86

JSScore 38.65 40.63 40.25 39.9
JSScore + Edit 40.29 42.21 42.25 41.98

Jaccard 38.59 40.20 39.30 38.93
Jaccard + Edit 39.79 41.47 41.04 40.54

ceptualization based similarities can improve the search relevance
results respectively.

Similarity Measure based on Concepts
Given a pair of URL u and query q, we measure their similarity
based on the concept vectors cu and cq. We adopt three similarity
scores used in this experiment: (1) cosine similarity, (2) Jaccard
similarity, and (3) Jenson-Shannon (JS) divergence. JS divergence
is a popular method to measure the similarity between two prob-
ability distributions. Although we are not strictly using a proba-
bilistic approach, we use normalized values in the concept vector
to approximate a distribution to compute the JS score.

Besides the three similarity scores for concepts, we also test ed-
it distance based similarity, which is used to compare our seman-
tic approach with the string similarity based approach. The edit
distance-based similarity is computed based on

Edit(q, u) =
1∑
wsti

N∑
i=1

wsti

[
1 − EditDist(q, sti)

max(Len(q),Len(sti))

]
, (9)

where wsti is defined as the same value as in Eq. (8), EditDist(q, sti)
is the edit distance between two strings of queries q and sti (the ith
short text related to URL), and Len(q) is the length of the string of
q.

The results are shown in Tables 7 and 8. Among cosine, Jaccard
and JSScore, cosine is the best. Jaccard similarity loses the infor-
mation of concept weight. Moreover, our approach is not strictly
a probabilistic approach. Therefore the JSScore may not be able
to best evaluate the similarity between two sets of concepts. Fur-
thermore, we can see that “cosine+edit” gives the best results. We
do not argue that concept similarity can solely beat edit distance,
since semantically related queries are only a portion of the relat-
ed queries. There are also a lot of query refinements with similar
surface. Therefore, we argue that our signal is a very good comple-
mentary signal to simple surface based similarities.

Content + Concepts (Content Ranker)
To show how our method can improve the state-of-the-art methods,
we first show how the concept information can be used to improve
the content-based ranking scores. We inject our concept based sim-
ilarity scores to real ranking system, in which the content features
include about 1,000 dimensions. Particularly, those features in-
clude BM25 and BM25F [34], lexical features, statistical counting

Table 8: Comparison of NDCG scores with different single sim-
ilarity measure for tail data.

Methods Title Anchor Click 5M Click 10M
Edit 28.6 27.76 29.9 30.17

Cosine 28.27 27.37 28.89 29.14
Cosine+Edit 30.03 29.32 30.78 31.42

JSScore 26.09 24.62 27.28 27.71
JSScore + Edit 29.07 28.01 30.57 31.38

Jaccard 27.13 27.56 29.43 29.47
Jaccard + Edit 29.21 30.38 30.80 28.85

features, etc. [7, 23, 35]. The learning to rank machine automati-
cally combines different features to fit the training data [35]. The
comparison results are shown in Fig. 6 for mixture data and Fig. 7
for tail data. We can see that the improvement achieved by our
approach is larger on tail data than on mixture data. This may be
because the popularity fields of mixture data contain more infor-
mation for each URL. Thus, the additional information provided
by Probase is not as significant as it is for the tail data. Moreover,
we see that click 10M data and click 5M data achieve more im-
provements than anchor texts. The historical queries contain more
information on both semantics and users’ intents.

Content + Click + Concepts (Full Ranker)
To check whether the improvement is only achieved through the
click information, we also compare with a full ranker. This ranker
makes use of both content and click information, including the fea-
tures generated by click model [38] and translation model [12]. The
comparison results are shown in Figs. 8 and 9. We can see that,
for the tail data, concept information can also show improvement.
However, for the mixture data, only click 10M data shows small
improvement. This is because the click information for the mixture
data is already good, and the concept does not present enough addi-
tional information. The click 10M data shows small improvements
while click 5M does not, since click 10M’s data contains richer his-
torical queries that can be used to model the intent. Nonetheless,
for tail queries, click information is still not enough.

The above experiments show that our method is especially use-
ful when exact click information is not enough to evaluate the rele-
vance score.

6. CONCLUSION AND FUTURE WORK
In web search, one of the most challenging problems is how to

handle tail queries. In this paper, we introduce a novel approach
to transfer our understanding of head queries to tail queries. We
develop a core technique called conceptualization that maps a short
text to concepts defined in a general probabilistic knowledgebase.
This allows us to represent queries by concepts with weights. Fur-
thermore, we expand URLs with textual context (by leveraging the
click-through graph, anchor texts, web page titles, etc.) so that we
can map URLs to concepts as well. Once both queries (head and
tail queries alike) and URLs are in the same concept space, we can
compute their similarity as a relevance measure. We perform exper-

(a) Title. (b) Anchor. (c) Click 5 Months. (d) Click 10 Months.

Figure 6: NDCG results for “mixture” data with content ranker. “Probase” indicates the content ranker with the help of the
similarities computed based on Probase.

(a) Title. (b) Anchor. (c) Click 5 Months. (d) Click 10 Months.

Figure 7: NDCG results for “tail” data with content ranker. “Probase” indicates the content ranker with the help of the similarities
computed based on Probase.

(a) Title. (b) Anchor. (c) Click 5 Months. (d) Click 10 Months.

Figure 8: NDCG results for “mixture” data with full ranker. “Probase” indicates the full ranker with the help of the similarities
computed based on Probase.

(a) Title. (b) Anchor. (c) Click 5 Months. (d) Click 10 Months.

Figure 9: NDCG results for “tail” data with full ranker. “Probase” indicates the full ranker with the help of the similarities computed
based on Probase.

iments on two real world data sets to show the effectiveness of this
approach in improving search relevance, especially for tail queries.

Acknowledgements
We thank Mei Li for her kind help on the evaluation of ranking
system. We would like to thank Jun Xu for his helpful discussion.
We also thank the reviewers for their valuable comments to improve
this paper.

7. REFERENCES
[1] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and

O. Etzioni. Open information extraction from the web. In
IJCAI, pages 2670–2676, 2007.

[2] A. Berger and J. Lafferty. Information retrieval as statistical
translation. In SIGIR, pages 222–229, 1999.

[3] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet
allocation. Journal of Machine Learning Research,
3:993–1022, 2003.

[4] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor.
Freebase: a collaboratively created graph database for
structuring human knowledge. In SIGMOD, pages
1247–1250, 2008.

[5] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. H. Jr.,
and T. M. Mitchell. Toward an architecture for never-ending
language learning. In AAAI, pages 1306–1313, 2010.

[6] K. Collins-Thompson and J. Callan. Query expansion using
random walk models. In CIKM, pages 704–711, 2005.

[7] P. Donmez, K. M. Svore, and C. J. C. Burges. On the local
optimality of lambdarank. In SIGIR, pages 460–467, 2009.

[8] D. Downey, S. Dumais, and E. Horvitz. Heads and tails:
Studies of web search with common and rare queries. In
SIGIR, pages 847–848, 2007.

[9] O. Egozi, S. Markovitch, and E. Gabrilovich. Concept-based
information retrieval using explicit semantic analysis. ACM
Trans. Inf. Syst., 29(2):8:1–8:34, 2011.

[10] O. Etzioni, M. J. Cafarella, D. Downey, S. Kok, A.-M.
Popescu, T. Shaked, S. Soderland, D. S. Weld, and A. Yates.
Web-scale information extraction in knowitall: (preliminary
results). In WWW, pages 100–110, 2004.

[11] C. Fellbaum, editor. WordNet: an electronic lexical database.
MIT Press, 1998.

[12] J. Gao, X. He, and J.-Y. Nie. Clickthrough-based translation
models for web search: from word models to phrase models.
In CIKM, pages 1139–1148, 2010.

[13] J. Gao, K. Toutanova, and W. tau Yih. Clickthrough-based
latent semantic models for web search. In SIGIR, pages
675–684, 2011.

[14] M.-H. Hsu and H.-H. Chen. Information retrieval with
commonsense knowledge. In SIGIR, pages 651–652, 2006.

[15] M.-H. Hsu, M.-F. Tsai, and H.-H. Chen. Combining wordnet
and conceptnet for automatic query expansion: a learning
approach. In AIRS, pages 213–224, 2008.

[16] J. Huang, J. Gao, J. Miao, X. Li, K. Wang, F. Behr, and C. L.
Giles. Exploring web scale language models for search query
processing. In WWW, pages 451–460, 2010.

[17] P.-S. Huang, X. He, J. Gao, L. Deng, A. Acero, and L. Heck.
Learning deep structured semantic models for web search
using clickthrough data. In CIKM, pages 2333–2338, 2013.

[18] K. Järvelin and J. Kekäläinen. Ir evaluation methods for
retrieving highly relevant documents. In SIGIR, pages 41–48,
2000.

[19] T. Joachims. Optimizing search engines using clickthrough
data. In KDD, pages 133–142, 2002.

[20] A. Kotov and C. Zhai. Tapping into knowledge base for
concept feedback: Leveraging conceptnet to improve search
results for difficult queries. In WSDM, 2012.

[21] R. Kraft and J. Zien. Mining anchor text for query
refinement. In WWW, pages 666–674, 2004.

[22] D. B. Lenat and R. V. Guha. Building Large
Knowledge-Based Systems: Representation and Inference in
the Cyc Project. Addison-Wesley, 1989.

[23] P. Li, C. J. C. Burges, and Q. Wu. Mcrank: Learning to rank
using multiple classification and gradient boosting. In NIPS,
2007.

[24] Y. Li, W. P. R. Luk, K. S. E. Ho, and F. L. K. Chung.
Improving weak ad-hoc queries using wikipedia as external
corpus. In SIGIR, pages 797–798, 2007.

[25] S. Liu, F. Liu, C. Yu, and W. Meng. An effective approach to
document retrieval via utilizing wordnet and recognizing
phrases. In SIGIR, pages 266–272, 2004.

[26] R. Mandala, T. Tokunaga, and H. Tanaka. Combining
multiple evidence from different types of thesaurus for query
expansion. In SIGIR, pages 191–197, 1999.

[27] S. P. Ponzetto and M. Strube. Deriving a large-scale
taxonomy from wikipedia. In AAAI, pages 1440–1445, 2007.

[28] M. Richardson, E. Dominowska, and R. Ragno. Predicting
clicks: estimating the click-through rate for new ads. In
WWW, pages 521–530, 2007.

[29] S. Robertson, H. Zaragoza, and M. Taylor. Simple bm25
extension to multiple weighted fields. In CIKM, pages
42–49, 2004.

[30] E. Sadikov, J. Madhavan, L. Wang, and A. Halevy.
Clustering query refinements by user intent. In WWW, pages
841–850, 2010.

[31] C. Silverstein, H. Marais, M. Henzinger, and M. Moricz.
Analysis of a very large web search engine query log. SIGIR
Forum, 33:6–12, September 1999.

[32] Y. Song, H. Wang, Z. Wang, H. Li, and W. Chen. Short text
conceptualization using a probabilistic knowledgebase. In
IJCAI, pages 2330–2336, 2011.

[33] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core
of semantic knowledge. In WWW, pages 697–706, 2007.

[34] K. M. Svore and C. J. C. Burges. A machine learning
approach for improved bm25 retrieval. In CIKM, pages
1811–1814, 2009.

[35] Q. Wu, C. J. C. Burges, K. M. Svore, and J. Gao. Adapting
boosting for information retrieval measures. Inf. Retr.,
13(3):254–270, 2010.

[36] W. Wu, H. Li, H. Wang, and K. Q. Zhu. Probase: A
probabilistic taxonomy for text understanding. In SIGMOD,
pages 481–492, 2012.

[37] Z. Yin, M. Shokouhi, and N. Craswell. Query expansion
using external evidence. In ECIR, pages 362–374, 2009.

[38] Y. Zhang, W. Chen, D. Wang, and Q. Yang. User-click
modeling for understanding and predicting search-behavior.
In KDD, pages 1388–1396, 2011.

