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Abstract—We propose OverSketch, an approximate algo-
rithm for distributed matrix multiplication in serverless com-
puting. OverSketch leverages ideas from matrix sketching and
high-performance computing to enable cost-efficient multipli-
cation that is resilient to faults and straggling nodes pervasive
in low-cost serverless architectures. We establish statistical
guarantees on the accuracy of OverSketch and empirically
validate our results by solving a large-scale linear program
using interior-point methods and demonstrate a 34% reduction
in compute time on AWS Lambda.
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I. INTRODUCTION

Matrix multiplication is a frequent computational bottle-
neck in fields like scientific computing, machine learning,
graph processing, etc. In many applications, such matrices
are very large, with dimensions easily scaling up to millions.
Consequently, the last three decades have witnessed the devel-
opment of many algorithms for parallel matrix multiplication
for High Performance Computing (HPC). During the same
period, technological trends like Moore’s law made arithmetic
operations faster and, as a result, the bottleneck for parallel
computation shifted from computation to communication.
Today, the cost of moving data between nodes exceeds the
cost of arithmetic operations by orders of magnitude. This
gap is increasing exponentially with time and has led to the
popularity of communication-avoiding algorithms for parallel
computation [1], [2].

In the last few years, there has been a paradigm shift
from HPC towards distributed computing on the cloud due to
extensive and inexpensive commercial offerings. In spite of
developments in recent years, server-based cloud computing
is inaccessible to a large number of users due to complex
cluster management and a myriad of configuration tools.
Serverless computing1 has recently begun to fill this void
by abstracting away the need for maintaining servers and
thus removing the need for complicated cluster management
while providing greater elasticity and easy scalability [3]–[5].
Some examples are Amazon Web Services (AWS) based
Lambda and Google Cloud Functions. Large-scale matrix
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1The term ‘serverless’ is a misnomer, servers are still used for computation
but their maintenance and provisioning is hidden from the user.

Stragglers

Figure 1: Job times for 3000 AWS Lambda nodes where the median job
time is around 40 seconds, and around 5% of the nodes take 100 seconds,
and two nodes take as much as 375 seconds to complete the same job.

multiplication, being embarrassingly parallel and frequently
encountered, is a natural fit for serverless computing.

Existing distributed algorithms for HPC cannot, in general,
be extended to serverless computing due to the following
crucial differences between the two architectures:
• Workers in the serverless setting, unlike cluster nodes, do

not communicate amongst themselves. They read/write data
directly from/to a single data storage entity (for example,
cloud storage like AWS S3) and the user is only allowed
to submit prespecified jobs and does not have any control
over the management of workers [4], [5].

• Distributed computation in HPC/server-based systems is
generally limited by the number of workers at disposal.
However, in serverless systems, the number of inexpensive
workers can easily be scaled into the thousands, but these
low-commodity nodes are generally limited by the amount
of memory and lifespan available.

• Unlike HPC, nodes in the cloud-based systems suffer
degradation due to system noise [6], [7]. This causes
variability in job times, resulting in a subset of slower
nodes called stragglers. Time statistics for worker job times
are plotted in Figure 1 for AWS Lambda. Notably, there
are a few workers (∼ 5%) that take much longer than the
median job time, thus decreasing the overall computational
efficiency of the system. Distributed algorithms robust to
such unreliable nodes are desirable in cloud computing.

A. Main Contributions

This paper bridges the gap between communication-
efficient algorithms for distributed computation and existing
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methods for straggler-resiliency. To this end, we first analyze
the monetary cost of distributed matrix multiplication for
serverless computing for two different schemes of partitioning
and distributing the data. Specifically, we show that row-
column partitioning of input matrices requires asymptotically
more communication than blocked partitioning for distributed
matrix multiplication, similar to the optimal communication-
avoiding algorithms in the HPC literature.

In applications like machine learning, where the data itself
is noisy, solution accuracy is often traded for computational
efficiency. Motivated by this, we propose OverSketch, a
sketching scheme to perform blocked approximate matrix
multiplication and prove statistical guarantees on the accuracy
of the result. OverSketch has threefold advantages:
1) Reduced computational complexity by significantly de-

creasing the dimension of input matrices using sketching,
2) Resiliency against stragglers and faults in serverless

computing by over-provisioning the sketch dimension,
3) Communication efficiency for distributed multiplication

due to the blocked partition of input matrices.
Sketching for OverSketch requires linear time that is embar-
rassingly parallel. Through experiments on AWS Lambda,
we show that small redundancy (≈ 5%) is enough to tackle
stragglers using OverSketch. Furthermore, we use OverSketch
to calculate the Hessian distributedly while solving a large
linear program using interior point methods and demonstrate
a 34% reduction in total compute time on AWS Lambda.

B. Related Work

Recently, approaches based on coding theory have been
developed which cleverly introduce redundancy into the
computation to deal with stragglers [8]–[13]. Many of
these proposed schemes have been dedicated to distributed
matrix multiplication [9]–[12]. In [9], the authors develop a
coding scheme for matrix multiplication that uses Maximum
Distance Separable (MDS) codes to code A in a column-wise
fashion and B in a row-wise fashion, so that the resultant
is a product-code of C, where C = A×B. An illustration
is shown in Figure 2. Authors in [10] generalize the results
in [9] to a d-dimensional product code with only one parity
in each dimension. In [11], the authors develop polynomial
codes for matrix multiplication, which is an improvement
over [9] in terms of recovery threshold, that is, minimum
number of workers required to recover the product C.

The commonality in these and other similar results is
that they divide the input matrices into row and column
blocks, where each worker multiplies a row block (or some
combination of row blocks) of A and a column block (or
some combination of column blocks) of B. These methods
provide straggler resiliency but are not cost-efficient as they
require asymptotically more communication than blocked
partitioning of data, as discussed in detail in the next section.
Another disadvantage of such coding-based methods is that
there are separate encoding and decoding phases that require

Figure 2: Matrix A is divided into 2 row chunks A1 and A2, while
B is divided into two column chunks B1 and B2. During the encoding
process, redundant chunks A1+A2 and B1+B2 are created. To compute
C, 9 workers store each possible combination of a chunk of A and B
and multiply them. During the decoding phase, the master can recover the
affected data (C11, C12 and C22 in this case) using the redundant chunks.
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(a) Distributed naive matrix multiplication, where each worker multiplies a
row-block of A of size a× n and a column block of B of size n× a to get
an a× a block of C.
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(b) Distributed blocked matrix multiplication, where each worker multiplies a
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Figure 3: An illustration of two algorithms for distributed matrix
multiplication.

additional communication and potentially large computational
burden at the master node, which may make the algorithm
infeasible in some distributed computing environments.

II. PRELIMINARIES

There are two common schemes for distributed multi-
plication of two matrices A ∈ Rm×n and B ∈ Rn×l, as
illustrated in Figures 3a and 3b. We refer to these schemes
as naive and blocked matrix multiplication, respectively. For
detailed steps of naive and blocked matrix multiplication in
the serverless setting, we refer the readers to algorithms 1 and
2 in [14], respectively. During naive matrix multiplication,
each worker receives and multiplies an a × n row-block
of A and n × a column-block of B to compute an a × a
block of C. Blocked matrix multiplication consists of two
phases. During the computation phase, each worker gets
two b× b blocks, one each from A and B, which are then
multiplied by the workers. In the reduction phase, to compute
a b× b block of C, one worker gathers results of all the n/b
workers from the the cloud storage corresponding to one
row-block of A and one column-block of B and adds them.
For example, in Figure 3b, to get C(1, 1), results from 3
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workers who compute A(1, 1)×B(1, 1), A(1, 2)×B(2, 1)
and A(1, 3)×B(3, 1) are added.

It is accepted in High Performance Computing (HPC) that
blocked partitioning of input matrices takes less time than
naive matrix multiplication [1], [2], [15]. For example, in [2],
the authors propose 2.5D matrix multiplication, an optimal
communication avoiding algorithm for matrix multiplication
in HPC/server-based computing, that divides input matrices
into blocks and stores redundant copies of them across proces-
sors to reduce bandwidth and latency costs. However, perhaps
due to lack of a proper analysis for cloud-based distributed
computing, existing algorithms for straggler mitigation in
the cloud do naive matrix multiplication [9]–[11]. Next,
we develop a new cost model for the serverless computing
architecture and aim at bridging the gap between cost analysis
and straggler mitigation for distributed computation in the
serverless setting.

III. COST ANALYSIS: NAIVE AND BLOCKED
MULTIPLICATION

There are communication and computation costs associated
with any distributed algorithm. Communication costs them-
selves are of two types: latency and bandwidth. For example,
sending n words requires packing them into contiguous
memory and transmitting them as a message. The latency
cost α is the fixed overhead time spent in packing and
transmitting a message over the network. Thus, to send Q
messages, the total latency cost is αQ. Similarly, to transmit
K words, a bandwidth cost proportional to K, given by
βK, is associated. Letting γ denote the time to perform one
floating point operation (FLOP), the total computing cost
is γF , where F is the total number of FLOPs at the node.
Hence, the total time pertaining to one node that sends M
messages, K words and performs F FLOPs is

Tworker = αQ+ βK + γF,

where α � β � γ. The (α, β, γ) model defined above
has been well-studied and is used extensively in the HPC
literature [1], [2]. It is ideally suited for serverless computing,
where network topology does not affect the latency costs as
each worker reads/writes directly from/to the cloud storage
and no multicast gains are possible.

However, our analysis for costs incurred during distributed
matrix multiplication differs from previous works in three
principle ways. 1) Workers in serverless architecture cannot
communicate amongst themselves, and hence, our algorithm
for blocked multiplication is very different from optimal
communication avoiding algorithm for HPC that involves
message passing between workers [2]. 2) The number of
workers in HPC analyses is generally fixed, whereas the
number of workers in serverless setting is quite flexible,
easily scaling into the thousands, and the limiting factor is
memory/bandwidth available at each node. 3) Computation
on the inexpensive cloud is more motivated by savings in

Table I: Costs comparison for naive and blocked matrix
multiplication in the serverless setting, where δ < 2.

Cost type Naive multiply Blocked Multiply Ratio: naive/blocked

Latency O(mln2(1−δ)) O(mln1−3δ/2) O(n1−δ/2)

Bandwidth O(mln2−δ) O(mln1−δ/2) O(n1−δ/2)

Computation O(mln) O(mln) 1

expenditure than the time required to run the algorithm. We
define our cost function below.

If there are W workers, each doing an equal amount
of work, the total amount of money spent in running the
distributed algorithm on the cloud is proportional to

Ctotal =W × Tworker =W (αQ+ βK + γF ). (1)

Eq. (1) does not take into account the straggling costs as they
increase the total cost by a constant factor (by re-running
the jobs that are straggling) and hence does not affect our
asymptotic analysis.

Inexpensive nodes in serverless computing are generally
constrained by the amount of memory or communication
bandwidth available. For example, AWS Lambda nodes have
a maximum allocated memory of 3008 MB2, a fraction
of the memory available in today’s smartphones. Let the
memory available at each node be limited to M words. That
is, the communication bandwidth available at each worker
is limited to M words, and this is the main bottleneck of
the distributed system. We would like to multiply two large
matrices A ∈ Rm×n and B ∈ Rn×l in parallel, and let
M = O(nδ). For all practical cases in consideration, δ < 2.

Proposition 3.1: For the cost model defined in Eq. (1),
communication (i.e., latency and bandwidth) costs for blocked
multiplication outperform naive multiplication by a factor of
O(n1−δ/2), where the individual costs are listed in Table I.

We refer the readers to Appendix A of [14] for proof. The
rightmost column in Table I lists the ratio of communication
costs for naive and blocked matrix multiplication. We note
that the latter significantly outperforms the former, with
communication costs being asymptotically worse for naive
multiplication. An intuition behind why this happens is that
each worker in distributed blocked multiplication does more
work than in distributed naive multiplication for the same
amount of received data. For example, to multiply two square
matrices of dimension n, where memory at each worker
limited by M = 2n, a = 1 for naive multiplication and b =√
n for blocked multiplication. We note that the amount of

work done by each worker in naive and blocked multiplication
is O(n) and O(n3/2), respectively. Since the total amount
of work is constant and equal to O(n3), blocked matrix
multiplication ends up communicating less during the overall
execution of the algorithm as it requires fewer workers. Note

2AWS Lambda limits are available at (may change over time)
https://docs.aws.amazon.com/lambda/latest/dg/limits.html
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Figure 4: Comparison of AWS Lambda costs for multiplying two n× n
matrices, where each worker is limited by 3008 MB of memory and price
per running worker per 100 milliseconds is $0.000004897.

that naive multiplication takes less time to complete as each
worker does asymptotically less work, however, the number
of workers required is asymptotically more, which is not an
efficient utilization of resources and increases the expenditure
significantly.

Figure 4 supports the above analysis where we plot the
cost in dollars of multiplying two square matrices in AWS
Lambda, where each node’s memory is limited by 3008 MB
and price per worker per 100 millisecond is $0.000004897.
However, as discussed earlier, existing schemes for straggler-
resiliency in distributed matrix multiplication consider naive
multiplication which is impractical from a user’s point of
view. In the next section, we propose OverSketch, a scheme
to mitigate the detrimental effects of stragglers for blocked
matrix multiplication.

IV. OVERSKETCH: STRAGGLER-RESILIENT BLOCKED
MATRIX MULTIPLICATION USING SKETCHING

Many of the recent advances in algorithms for numerical
linear algebra have come from the technique of linear sketch-
ing, in which a given matrix is compressed by multiplying it
with a random matrix of appropriate dimension. The resulting
product can then act as a proxy for the original matrix
in expensive computations such as matrix multiplication,
least-squares regression, low-rank approximation, etc. [16],
[17]. For example, computing the product of A ∈ Rm×n
and B ∈ Rn×l takes O(mnl) time. However, if we use
S ∈ Rn×d to compute the sketches, say Ã = AS ∈ Rm×d
and B̃ = STB ∈ Rd×l, where d � n is the sketch
dimension, we can reduce the computation time to O(mdl)
by computing an approximate product ASSTB. This is very
useful in applications like machine learning, where the data
itself is noisy, and computing the exact result is not needed.

Key idea behind OverSketch: Sketching accelerates
computation by eliminating redundancy in the matrix struc-
ture through dimension reduction. However, the coding-
based approaches described in Section I-B have shown
that redundancy can be good for combating stragglers if
judiciously introduced into the computation. With these
competing points of view in mind, our algorithm OverSketch
works by "oversketching" the matrices to be multiplied by
reducing dimensionality not to the minimum required for
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Figure 5: An illustration of multiplication of m× z matrix Ã and z × l
matrix B̃, where z = d + b assures resiliency against one straggler per
block of C, and d is chosen by the user to guarantee a desired accuracy.
Here, m = l = 2b, d = 3b, where b is the block-size for blocked matrix
multiplication. This scheme ensures one worker can be ignored while
calculating each block of C.

sketching accuracy, but rather to a slightly higher amount
which simultaneously ensures both the accuracy guarantees
and speedups of sketching and the straggler resilience
afforded by the redundancy which was not eliminated in
the sketch. OverSketch further reduces asymptotic costs by
adopting the idea of block partitioning from HPC, suitably
adapted for a serverless architecture.

Next, we propose a sketching scheme for OverSketch and
describe the process of straggler mitigation in detail.

A. OverSketch: The Algorithm

During blocked matrix multiplication, the (i, j)-th block of
C is computed by assimilating results from d/b workers who
compute the product Ã(i, k)× B̃(k, j), for k = 1, · · · , d/b.
Thus, the computation C(i, j) can be viewed as the product of
the row sub-block Ã(i, :) ∈ Rb×d of Ã and the column sub-
block B̃(:, j) ∈ Rd×b of B̃. An illustration is shown in Figure
5. Assuming d is large enough to guarantee the required
accuracy in C, we increase the sketch dimension from d to
z = d+ eb, where e is the worst case number of stragglers
in N = d/b workers. For the example in Figure 5, e = 1. To
get a better insight on e, we observe in our simulations for
cloud systems like AWS lambda and EC2 that the number of
stragglers is < 5% for most runs. Thus, if N = d/b = 40, i.e.
40 workers compute one block of C, then e ≈ 2 is sufficient
to get similar accuracy for matrix multiplication. Next, we
describe how to compute the sketched matrices Ã and B̃.

Many sketching techniques have been proposed recently
for approximate matrix computations. For example, to sketch
a m × n matrix A with sketch dimension d, Gaussian
projection takes O(mnd) time, Subsampled Randomized
Hadamard Transform (SRHT) takes O(mn log n) time, count
sketch takes O(nnz(A)) time, where nnz(·) is the number
of non-zero entries [17], [18]. Count sketch is one of the
most popular sketching techniques as it requires linear time
to compute the matrix sketch with similar approximation
guarantees.
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Algorithm 1: OverSketch: Distributed blocked matrix
multiplication for the Cloud

Input : Matrices A ∈ Rm×n and B ∈ Rn×l, sketch
dimension z, straggler tolerance e

Result: C ≈ A×B
1 Sketching: Obtain Ã = AS and B̃ = STB using S ∈ Rn×z

from (3) in a distributed fashion
2 Block partitioning: Divide Ã into m/b× z/b matrix and B

into z/b× l/b matrix of b× b blocks where b is the
block-size

3 Computation phase: Multiply Ã and B̃ using blocked
partitioning. This step invokes mlz/b3 workers, where z/b
workers are used per block of C

4 Termination: Stop computation when any d/b workers return
their results for each of the ml/b2 blocks of C, where
d = z − eb

5 Reduction phase: Invoke ml/b2 workers for reduction at
each block of C on computed results

To compute the count sketch of A ∈ Rm×n of sketch
dimension b, each column in A is multiplied by −1 with
probability 0.5 and then mapped to an integer sampled
uniformly from {1, 2, · · · , b}. Then, to compute the sketch
Ãc = ASc, columns with the same mapped value are
summed. An example of count sketch matrix with n = 9
and b = 3 is

STc =

0 0 0 1 −1 0 −1 0 0
1 −1 0 0 0 1 0 0 0
0 0 1 0 0 0 0 −1 −1

 . (2)

The sparse structure of Sc ensures that the computation of
sketch takes O(nnz(A)) time. However, a drawback of the
desirable sparse structure of count sketch is that it cannot be
directly employed for straggler mitigation in blocked matrix
multiplication as it would imply complete loss of information
from a subset of columns of A. We refer the readers to [14]
for a detailed example.

To facilitate straggler mitigation for blocked matrix mul-
tiplication, we propose a new sketch matrix S, inspired by
count sketch, and define it as

S =
1√
N

(S1,S2, · · · ,SN+e), (3)

where N = d/b, e is the expected number of stragglers per
block of C and Si ∈ Rn×b, for i = 1, 2, · · · , (N + e), is a
count sketch matrix with dimension b. Thus, the total sketch-
dimension for the sketch matrix in (3) is z = (N + e)b =
d+eb. Computation of this sketch takes O(nnz(A)(N +e))
time and can be implemented in a distributed fashion trivially,
where (N + e) is the number of workers per block of C
and is a constant less than 30 for most practical cases. We
describe OverSketch in detail in Algorithm 1. We prove
statistical guarantees on the accuracy of our sketching based
matrix multiplication algorithm next.
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Figure 6: Time and approximation error for OverSketch with 3000
workers when e, the number of workers ignored per block of C, is
varied from 0 to 10.

B. OverSketch: Approximation guarantees

Definition 4.1: We say that an approximate matrix mul-
tiplication of two matrices A and B using sketch S, given
by ASSTB, is (ε, θ) accurate if, with probability at least
(1− θ), it satisfies

||AB−ASSTB||2F ≤ ε||A||2F ||B||2F .

Now, for blocked matrix multiplication using OverSketch
and as illustrated in Figure 5, the following holds

Theorem 4.1: Computing (AS) × (STB) using sketch
S ∈ Rn×z in (3) and d = 2

εθ , while ignoring e stragglers
among any z

b workers, is (ε, θ) accurate.
We refer the readers to Appendix B in [14] for proof.

V. EXPERIMENTAL RESULTS

A. Blocked Matrix Multiplication on AWS Lambda

We implement the straggler-resilient blocked matrix mul-
tiplication described above in the serverless computing
platform Pywren [4], [5]3, on the AWS Lambda cloud
system to compute an approximate C = AS × STB with
b = 2048,m = l = 10b, n = 60b and S as defined in (3)
with sketch dimension z = 30b. Throughout this experiment,
we take A and B to be constant matrices where the entries
of A are given by A(x, y) = x + y for all x ∈ [1,m] and
y ∈ [1, n] and B = AT . Thus, to compute (i, j)-th b × b
block of C, 30 nodes compute the product of Ã(i, :) and
B̃(:, j), where Ã = AS and B̃ = STB. While collecting
results, we ignore e workers for each block of C, where e
is varied from 0 to 10.

The time statistics are plotted in Figure 6a. The corre-
sponding worker job times are shown in Figure 1, where the
median job time is around 42 seconds, and some stragglers
return their results around 100 seconds and some others
take up to 375 seconds. We note that the compute time for
matrix multiplication reduces by a factor of 9 if we ignore
at most 4 workers per 30 workers that compute a block of

3A working implementation of OverSketch is available at
https://github.com/vvipgupta/OverSketch
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Figure 7: Time statistics and optimality gap on AWS Lambda while solving the LP in (4) using interior point methods, where e is the
number of workers ignored per block of C.

C. In figure 6b, for same A and B, we plot average error in
matrix multiplication by generating ten instances of sketches
and averaging the error in Frobenius norm, ||AB−ASSTB||F

||AB||F ,
across instances. We see that the average error is only 0.8%
when 4 workers are ignored.

B. Solving Optimization Problems with Sketched Matrix
multiplication

Matrix multiplication is the bottleneck of many optimiza-
tion problems. Thus, sketching has been applied to solve
several fairly common optimization problems using second-
order methods, like linear programs, maximum likelihood
estimation, generalized linear models like least squares and
logistic regression, semi-definite programs, support vector
machines, kernel ridge regression, etc., with essentially same
convergence guarantees as exact matrix multiplication (see
[19], [20], for example). As an instance, we solve the
following linear program (LP) using interior point methods
on AWS Lambda

minimize
Ax≤b

cTx, (4)

where x ∈ Rm×1, c ∈ Rm×1,b ∈ Rn×1 and A ∈ Rn×m is
the constraint matrix with n > m. To solve (4) using the
logarithmic barrier method, we solve the following sequence
of problems using Newton’s method

min
x∈Rm

f(x) = min
x∈Rm

(
τcTx−

n∑
i=1

log(bi − aix)

)
, (5)

where ai is the i-th row of A, τ is increased geometrically
as τ = 2τ after every 10 iterations and the total number of
iterations is 100. The update in the t-th iteration is given by
xt+1 = xt−η(∇2f(xt))

−1∇f(xt), where xt is the estimate
of the solution in the t-th iteration and η is the appropriate
step-size. The gradient and Hessian for the objective in (5)

are given by

∇f(x) = τc+

n∑
i=1

aTi
bi − aTi x

and (6)

∇2f(x) = AT diag
1

(bi− aix)2
A, (7)

respectively. The square root of the Hessian is given by
∇2f(x)1/2 = diag 1

|bi−aix|A. The computation of Hessian
requires O(nm2) time and is the bottleneck in each iter-
ation. Thus, we use our distributed and sketching-based
blocked matrix multiplication scheme to mitigate stragglers
while evaluating the Hessian approximately, i.e. ∇2f(x) ≈
(S∇2f(x)1/2)T × (S∇2f(x)1/2), on AWS Lambda, where
S is defined in (3).

We take the block size, b, to be 1000, the dimensions of
A to be n = 40b and m = 5b and the sketch dimension to
be z = 20b. We use a total of 500 workers in each iteration.
Thus, to compute each b × b block of C, 20 workers are
assigned to compute matrix multiplication on two b × b
blocks. We depict the time and error versus iterations in
figure 7. We plot our results for different values of e, where
e is the number of workers ignored per block of C. In our
simulations, each iteration includes around 9 seconds of
invocation time to launch AWS Lambda workers and assign
tasks. In figure 7a, we plot the total time that includes the
invocation time and computation time versus iterations. In
7b, we exclude the invocation time and plot just the compute
time in each iteration iteration and observe 34% savings in
solving (4) when e = 1, whereas the effect on error with
respect to the optimal solution is insignificant (as shown in
figure 7c).

C. Comparison with Existing Straggler Mitigation Schemes

In this section, we compare OverSketch with an existing
coding-theory based straggler mitigation scheme described in
[9]. An illustration for [9] is shown in Figure 2. We multiply
two square matrices A and B of dimension n on AWS
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Figure 8: Comparison of OverSketch with coded theory based
scheme in [9] on AWS Lambda. OverSketch requires asymptotically
less workers which translates to significant savings in cost.

Lambda using the two schemes, where A(x, y) = x+ y and
B(x, y) = x×y for all x, y ∈ [1, n]. We limit the bandwidth
of each worker by 400 MB (i.e. around 48 million entries,
where each entry takes 8 bytes) for a fair comparison. Thus,
we have 3b2 = 48 × 106, or b = 4000 for OverSketch
and 2an + a2 = 48 × 106 for [9], where a is the size of
the row-block of A (and column-block of B). We vary the
matrix dimension n from 6b = 24000 to 14b = 56000. For
OverSketch, we take the sketch dimension z to be n/2 + b,
and take e = 1, i.e., ignore one straggler per block of C.
For straggler mitigation in [9], we add one parity row in
A and one parity column in B. In Figures 8a and 8b, we
compare the workers required and average cost in dollars,
respectively, for the two schemes. We note that OverSketch
requires asymptotically fewer workers, and it translates to
the cost of doing matrix multiplication. This is because
the running time at each worker is heavily dependent on
communication, which is the same for both the schemes.
For n = 20000, the average error in Frobenius norm for
OverSketch is less than 2%, and decreases as n is increased.

The scheme in [9] requires an additional decoding phase,
and assume the existence of a powerful master that can store
the entire product C in memory and decode for the missing
blocks using the redundant chunks. This is also true for
the other schemes in [10]–[12]. Moreover, these schemes
would fail when the number of stragglers is more than the
provisioned redundancy while OverSketch has a ’graceful
degradation’ as one can get away by ignoring more workers
than provisioned at the cost of accuracy of the product.
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